Algebraic Geometry

Daniel Naylor

October 16, 2024

Contents

0	Motivation	2
	0.1 Categorical philosophy	2
1	Sheaves	6
In	ndex	10

0 Motivation

In Part II AG we defined an affine algebraic variety by:

Definition (Affine algebraic variety). We fix an algebraically closed field k and defined affine n-space $\mathbb{A}_k^n := k^n$, and for an ideal $I \leq k[x_1, \ldots, x_n]$ we defined

 $Z(I) := \{(a_1, \dots, a_n) \in \mathbb{A}^n \mid f(a_1, \dots, a_n) = 0 \ \forall f \in I\} \subseteq \mathbb{A}_k^n.$

We define a topology on \mathbb{A}^n by taking the closed sets to be the sets of the form $Z(I) \subseteq \mathbb{A}^n$.

We will introduce *schemes*.

Why schemes?

Why not varieties?

- (1) With varieties, we always work with algebraically closed fields. For example, take $k = \mathbb{R}$, $I = (x^2 + y^2 + 1) \subseteq \mathbb{R}[x, y]$. Then $Z(I) = \emptyset$.
- (2) Number theory? We study Diophantine equations, i.e. $I \subseteq \mathbb{Z}[x_1, \ldots, x_n]$. So $Z(I) \subseteq \mathbb{Z}^n$.
- (3) Even if k is algebraically closed, we lose information when we pass from I to Z(I). For example, I = (x²) ⊆ C[x]. Then Z(I) = {0} = Z(x).
 Recall Hilbert's Nullstellensatz, which states that the set of polynomials in k[x₁,...,x_n] vanishing on Z(I) for I ⊆ k[x₁,...,x_n] is the radical of I.
 But it is natural ideals like (x²).
 (y x², y α) ⊆ C[x, y] (α ∈ C).

If x = 0, $(x^2 - y, y - \alpha) = (x^2, y)$.

0.1 Categorical philosophy

(Read definition on Wikipedia or see CT).

Let **Sets** be the category of sets.

Sets is the category with objects being all sets, with morphisms between objects maps of sets. If X and Y are sets, we write Hom(X, Y) for the set of maps between X and Y. Note that there is a bijection

$$\operatorname{Hom}(\{*\}, X) \to X$$
$$(f: \{*\} \to X) \mapsto f(*)$$

Let's use this philosophy to understand points on affine algebraic varieties.

 \mathbb{A}_k^0 is a point. If X is an affine variety, then the points of X should be in 1-1 correspondence with $\operatorname{Hom}(\mathbb{A}_k^0, X)$. Giving a morphism between affine varieties is easy. Denote by A(X) (sometimes k[X]) the coordinate ring $(A(X) = k[x_1, \ldots, x_n]/I(X)$, where I(X) is the ideal of functions that vanish on X). This is a k-algebra. We showed that if X and Y are affine varieties, then $\operatorname{Hom}(X, Y) = \operatorname{Hom}_{k-\operatorname{alg}}(A(Y), A(X))$ (see Part II AG or handout). So

$$\operatorname{Hom}(\mathbb{A}_k^0, X) = \operatorname{Hom}_{k-\operatorname{alg}}(k[x_1, \dots, x_n]/I(X), k).$$

Note that giving a k-algebra homomorphism

$$k[x_1,\ldots,x_n] \to k$$

can be done by specifying the images of x_i can be done by specifying the images of x_i , say $x_i \mapsto a_i$ such that for any $f \in I(X)$, $f(a_1, \ldots, a_n) = 0$. So there is a 1- correspondence between such k-algebra homomorphisms and points of X.

If k is algebraically closed, the maximal ideals of $k[x_1, \ldots, x_n]$ are precisely the ideals of the form $(x_1 - a_1, \ldots, x_n - a_n)$ for $(a_1, \ldots, a_n) \in \mathbb{A}^n$ (a form of Hilbert Nullstellensatz) and the maximal ideals of A(X) are of the form $(x_1 - a_1, \ldots, x_n - a_n) \mod I(X)$ with $(a_1, \ldots, a_n) \in X$. Thus we have a 1 - 1 correspondence between points of X and maximal ideals of A(X).

Now suppose k is not algebraically closed. Let's consider k-algebra homomorphisms

$$k[x_1,\ldots,x_n]/I(X) = A(X) \to L$$

where L is an extension of k. These are given by $x_i \mapsto a_i$ with $f(a_1, \ldots, a_n) = 0$ for all $f \in I(X)$. Thus

$$\operatorname{Hom}_k(A(X),L) = \{(a_1,\ldots,a_n) \in \mathbb{A}_L^n \mid f(a_1,\ldots,a_n) = 0 \; \forall f \in I(X)\}$$

In other words: the k-algebra homomorphisms $A(X) \to L$ correspond to L-valued points, i.e. points with coordinates in L.

Could work over \mathbb{Z} . Take an ideal $I \subseteq \mathbb{Z}[x_1, \ldots, x_n]$, and set

$$A = \mathbb{Z}[x_1, \dots, x_n]/I.$$

Ring homomorphisms $A \to \mathbb{Z}$ are 1-1 correspondence with $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ such that $f(a_1, \ldots, a_n) = 0$ $\forall f \in I$. Maps $A \to \mathbb{F}_p$ give "solutions" mod p, or maps $A \to \mathbb{Q}$ give rational solutions.

What we want: Given an extension of A, we want to define a gadget X = SpecA (spectrum of A), and an R-valued point of X is a ring homomorphism $A \to R$. We write the set of R-valued points as

$$X(R) := \operatorname{Hom}_{\operatorname{Ring}}(A, R).$$

Morphisms $\operatorname{Spec} B \to \operatorname{Spec} A$ should be the same as ring homomorphisms $A \to B$.

Definition (Category of affine schemes). The category of affine schemes is the opposite category of rings.

Reminder: All of our rings have 1 and are commutative, and ring homomorphisms $\varphi : A \to B$ satisfy $\varphi(1) = 1$.

Definition. A *scheme* is a geometric object which is locally an affine scheme.

Analogy: A manifold is something which locally looks like an open subset of \mathbb{R}^n .

Definition 0.1 (Spectrum). Let A be a ring. Then

Spec = $\{p \subseteq A \mid P \text{ a prime ideal}\}.$

Note: In general, if we have an *L*-valued point of $X = Z(I) \subseteq \mathbb{A}^n$, we get a ring homomorphism $\varphi : A(X) \to L$ has image an integral subdomain of *L*, so ker φ is prime.

Definition 0.2 (V(I)). For $I \subseteq A$ an ideal, define

$$V(I) = \{ P \in \operatorname{Spec} A \mid P \supseteq I \}.$$

Proposition. The sets V(I) form the closed sets of a topology on Spec A, called the Zariski topology.

Proof.

- (1) $V(A) = \emptyset$
- (2) $V(0) = \operatorname{Spec} A$
- (3) If $\{I_j\}_{j \in J}$ is a collection of ideals, then

$$\bigcap_{j \in J} V(I_j) = V\left(\sum_{r \in J} I_j\right).$$

(easy!)

(4) $V(I_1) \cup V(I_2) = V(I_1 \cap I_2)$: \subseteq If $P \supseteq I_1$ or $P \supseteq I_2$, then $P \supseteq I_1 \cap I_2$. \supseteq If $P \supseteq I_1 \cap I_2$, then $P \supseteq I_1$ or $P \supseteq I_2$.

See Atiyah + MacDonald, Prop 1.11 ii) [Try to prove it for yourself!]

Example. $A = k[x_1, \ldots, x_n]$ with k algebraically closed. For $I \subseteq A$, the maximal ideals of A corresponding to points of Z(I) are precisely the maximal ideals containing I.

1 Sheaves

Fix a topological space X.

Definition 1.1 (Presheaf). A *preasheaf* \mathcal{F} on X consists of data:

- (1) For every open set $U \subseteq X$, an abelian group $\mathcal{F}(U)$.
- (2) Whenever $V \subseteq U \subseteq X$ open, there is a restriction homomorphism $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ such that $\rho_{UU} = \mathrm{id}_{F(U)}$ and if $W \subseteq V \subseteq U \subseteq X$, then $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

Remark. This is precisely a contravariant functor from the category of open sets [i.e. objects are open sets $U \subseteq X$, morphisms are inclusions $V \subseteq U$] to the category of abelian groups. Can replace the category of abelian groups with your favourite category.

Definition 1.2 (Morphism of presheaves). If \mathcal{F}, \mathcal{M} are presheaves on X, then a morphism of presheaves $f : \mathcal{F} \to \mathcal{M}$ is data of, for each $U \subseteq X$ open, a group homomorphism $f_U : \mathcal{F}(U) \to \mathcal{M}(U)$ such that whenever $V \subseteq U$, we have a commutative diagram

$$s \qquad \mathcal{F}(U) \xrightarrow{f_U} \mathcal{M}(U) \\ \downarrow \rho_{UV}^{\mathcal{F}} \qquad \downarrow \rho_{UV}^{\mathcal{M}} \\ \downarrow_V \qquad \mathcal{F}(V) \xrightarrow{f_V} \mathcal{M}(V)$$

Example. $\mathcal{F}(U) = \{f : U \to \mathbb{R} \text{ continuous}\}$. $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is restriction of functions.

Definition 1.3 (Sheaf). A presheaf \mathcal{F} on X is a sheaf if it satisfies:

s

- (1) If $U \subseteq X$ is covered by $\{U_i\}$ $(U, U_i \subseteq X \text{ open})$ and $s \in \mathcal{F}(U)$ such that $s|_{U_i} = \rho_{UU_i}(s) = 0$, then s = 0.
- (2) If $U, \{U_i\}$ are as is (1), and $s_i \in \mathcal{F}(U_i)$ for each *i* such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all *i*, *j*, then there exists $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all *i* (gluing axiom).

Remark.

- (1) If \mathcal{F} is a sheaf, then $\mathcal{F}(\emptyset) = 0$ since the empty cover is a cover of \emptyset .
- (2) Properties (1) and (2) of the definition of a sheaf together can be stated by saying

$$0 \to F(U) \xrightarrow{\alpha} \bigoplus_{i \in I} \mathcal{F}(U_i) \xrightarrow{\beta_1} \bigoplus_{i,j \in I} \mathcal{F}(U_i \cap U_j)$$

is *exact*, for all $U \subseteq X$ open and open covers $\{U_i\}$ of U. Here,

$$\alpha(S) = (S|_{U_i})_{i \in I}$$

$$\beta_1((S_i)_{i \in I}) = (S_i|_{U_i \cap U_r})_{i,j \in I}$$

$$\beta_2((S_i)_{i \in I}) = (S_j|_{U_i \cap U_r})_{i,j \in I}$$

Exactness means:w

- (1) α is injective (this is property (1) of a sheaf)
- (2) $\beta_1 \circ \alpha = \beta_2 \circ \alpha$ (obvious)
- (3) For any $(S_i) \in \bigoplus_{i \in I} \mathcal{F}(U_i)$ with $\beta_1((S_i)) = \beta_2((S_i))$, there exists an $s \in \mathcal{F}(U)$ with $\alpha(S) = (S_i)$. (this is property (2) of a sheaf)

Remark. α is the *equalizer* of β_1, β_2 (from category theory).

This definition works, even if e.g. we a set rather than abelian group.

Example.

(1) X any topological space

 $\mathcal{F}(U) = \{ \text{continuous functions } f : U \to \mathbb{R} \}$

is a sheaf.

(2) $X = \mathbb{C}$ with the Euclidean topology. Then for

 $\mathcal{F}(U) = \{ f : U \to \mathbb{C} \mid f \text{ bounded and holomorphic} \}$

gluing fails because one may not preserve boundedness.

(3) Let G be a group, and set $\mathcal{F}(U) = G$ for all $U \subseteq X$. $\rho_{UV} = \mathrm{id}$. This is a presheaf, known as the *constant presheaf*. If we give G the discrete topology, set

 $\mathcal{F}'(U) = \{ f : U \to G \text{continuous} \}.$

These are locally constant functions. Obviously a sheaf, called the *constant sheaf*.

(4) If X is a variety, denote by $\mathcal{O}_X(U)$ the set of regular functions $f: U \to k$. \mathcal{O}_X is a sheaf, called the *structure sheaf* of X. See Part II AG for definitions of these.

Definition 1.4 (Stalk / germ). Let \mathcal{F} be a presheaf on $X, p \in X$. Then the *stalk* of f at p is $\mathcal{F}_p := \{(U, s) \mid U \text{ an open neighbourhood of } p, s \in \mathcal{F}(U)\} / \equiv$ where $(U, s) \equiv (V, t)$ if there exists $W \subseteq U \cap V$ a neighbourhood of p such that $s|_W = t|_W$. The equivalence class of $(U, s) \in \mathcal{F}_p$ is written as s_p , and is the germ of s at p.

Note that given a morphism $f: \mathcal{F} \to \mathcal{G}$, we obtain $f_p: \mathcal{F}_p \to \mathcal{G}_p$ via $f_p(U, s) = (U, f_U(s))$.

Note that a morphism of sheaves is just a morphism of presheaves.

Proposition. Let $f : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then f is an isomorphism if and only if f_p is an isomorphism for all $p \in X$.

Proof.

 \Rightarrow Obvious.

 \Leftarrow Assume f_p is an isomorphism for all p. We will show $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is an isomorphism for all U, and can then define the inverse to f by $(f^{-1})_U = (f_U)^{-1}$.

 f_U is injective: Suppose $s \in \mathcal{F}(U)$, $f_U(s) = 0$. Then for all $p \in U$, $f_p((U,s)) = (U, f_u(s)) = (U, 0) = 0 \in \mathcal{G}_p$. Thus $s_p = 0$ since f_p is injective. Thus there exists an open neighbourhoord $V_p \subseteq U$ of p such that $s|_{V_p} = 0$. But $\{V_p\}_{p \in U}$ covers U, so by (1) in the definition of a sheaf, we get s = 0.

 f_U is surjective: Let $p \in \mathcal{G}(U)$. Then for all $p \in U$, there exists $s_p \in \mathcal{F}_p$ such that $f_p(s_p) = t_p$, i.e. there exists an open neighbourhood of $p \in U$ and a germ (V_p, \tilde{s}_p) representating s_p such that $(V_p, f_{V_p}(\tilde{s}_p)) = (U, t) = t_p$. Shrinking V_p if necessary, we can assume $f_{V_p}(\tilde{s}_p) = t|_{V_p}$ on $V_p \cap V_q$. Then

$$f_{V_p \cap V_q}(\tilde{s}_p|_{V_p \cap V_q} - \tilde{s}_q|_{V_p \cap V_q}) = t|_{V_p \cap V_q} - t|_{V_p \cap V_q} = 0.$$

Since we have shown $f_{V_p \cap V_q}$ is injective, we get

$$\tilde{s}_p|_{V_p \cap V_q} = \tilde{s}_q|_{V_p \cap V_q},$$

and by (2) in the definition of a sheaf, there exists $s \in \mathcal{F}(U)$ such that $s|_{V_p} = \tilde{s}_p$ for all p. Now

$$f_U(s)|_{V_p} = f_{V_p}(s|_{V_p}) = f_{V_p}(\tilde{s}_p) = t|_{V_p}.$$

Thus $f_U(s) - t = 0$ by (1) in the definition of a sheaf, i.e. $f_U(s) = t$. Thus f_U is surjective.

Remark. If instead $f_p : \mathcal{F}_p \to \mathcal{G}_p$ is injective for all p, then $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is still injective. If instead $f_p : \mathcal{F}_p \to \mathcal{G}_p$ is surjective for all p, we need not have $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ surjective (we will see examples later).

Sheafification: Given a presheaf \mathcal{F} , there exists a sheaf \mathcal{F}^+ and a morphism $\theta : \mathcal{F} \to \mathcal{F}^+$ satisfying the following universal property:

For any sheaf \mathcal{G} and a morphism $\varphi : \mathcal{F} \to \mathcal{G}$, there exists a unique morphism $\varphi^+ : \mathcal{F}^+ \to \mathcal{G}$ such that

$$F \xrightarrow{\theta} F^+$$

$$\swarrow^{\varphi} \downarrow^{\varphi^+}_{\mathcal{G}}$$

commutes. The pair (\mathcal{F}^+,θ) is unique up to unique isomorphism.

Also, $\mathcal{F}_p \cong \mathcal{F}_p^+$ via θ_p for all $p \in X$.

Index

Spec 4, 5 V 4, 5 presheaf 6, 7, 8

sheaf 6, 7, 8