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0 Motivation

In Part I AG we defined an affine algebraic variety by:

e N
Definition (Affine algebraic variety). We fix an algebraically closed field k and defined affine
n-space A7 := k™, and for an ideal I < k[zq,...,z,] we defined

Z(I):={(a1,...,an) € A" | f(a1,...,an) =0Vf eI} CA}.

We define a topology on A™ by taking the closed sets to be the sets of the form Z(I) C A™.
N J

We will introduce schemes.
Why schemes?

Why not varieties?

(1) With varieties, we always work with algebraically closed fields. For example, take k = R, T =
(22 + 9% +1) CR[z,y]. Then Z(I) = 0.

(2) Number theory? We study Diophantine equations, i.e. I C Z[z1,...,z,]. So Z(I) C Z".

(3) Even if k is algebraically closed, we lose information when we pass from I to Z(I). For example,
I = (2?) C Clx]. Then Z(I) = {0} = Z(x).

Recall Hilbert’s Nullstellensatz, which states that the set of polynomials in k[z1, ..., z,] vanishing
on Z(I) for I C k[zy,...,x,] is the radical of I.

But it is natural ideals like (22).

(y—xz,y—a) - C[T”y] (Oé € C)

T

(/S:O (x= O)

Ifz =0, (22 —y,y—a) = (22,y).

0.1 Categorical philosophy

(Read definition on Wikipedia or see CT).
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Let Sets be the category of sets.

Sets is the category with objects being all sets, with morphisms between objects maps of sets. If
X and Y are sets, we write Hom(X,Y") for the set of maps between X and Y. Note that there is a
bijection

Hom({x},X) — X

(f {5} = X) = f(¥)

Let’s use this philosophy to understand points on affine algebraic varieties.

AY is a point. If X is an affine variety, then the points of X should be in 1 — 1 correspondence with
Hom(AY, X). Giving a morphism between affine varieties is easy. Denote by A(X) (sometimes k[X])
the coordinate ring (A(X) = k[z1,...,2,]/1(X), where I(X) is the ideal of functions that vanish
on X). This is a k-algebra. We showed that if X and Y are affine varieties, then Hom(X,Y) =
Homy a1 (A(Y), A(X)) (see Part II AG or handout). So

Hom(AY, X) = Homy_aig(k[x1, - . ., 20]/T(X), k).
Note that giving a k-algebra homomorphism
Elxy,...,zn] = k

can be done by specifying the images of x; can be done by specifying the images of z;, say x; — a; such
that for any f € I(X), f(a1,...,a,) = 0. So there is a 1— correspondence between such k-algebra
homomorphisms and points of X.

If k is algebraically closed, the maximal ideals of k[xi,...,x,] are precisely the ideals of the form
(r1—a1,...,zn —ay) for (a,...,a,) € A" (a form of Hilbert Nullstellensatz) and the maximal ideals
of A(X) are of the form (x; —ay,...,x, —ay) mod I(X) with (a1,...,a,) € X. Thus we havea 1 —1
correspondence between points of X and maximal ideals of A(X).

Now suppose k is not algebraically closed. Let’s consider k-algebra homomorphisms

ka1, ... x0]/I(X) = A(X) - L
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where L is an extension of k. These are given by x; — a; with f(aq,...,a,) = 0 for all f € I(X).
Thus
Homy (A(X),L) = {(a1,...,an) € AL | f(a1,...,a,) =0Vf € [(X)}.

In other words: the k-algebra homomorphisms A(X) — L correspond to L-valued points, i.e. points
with coordinates in L.

Could work over Z. Take an ideal I C Z[x1, ..., 2,], and set
A=2Z[xy,...,z,)/1.

Ring homomorphisms A — Z are 1—1 correspondence with (ay, ..., a,) € Z™ such that f(ay,...,a,) =
0Vf el Maps A—F, give “solutions” modp, or maps A — Q give rational solutions.

What we want: Given an extension of A,e we want to define a gadget X = SpecA (spectrum of A),
and an R-valued point of X is a ring homomorphism A — R. We write the set of R-valued points as

X(R) = HomRing(A, R)

Morphisms SpecB — SpecA should be the same as ring homomorphisms A — B.

Definition (Category of affine schemes). The category of affine schemes is the opposite category
of rings.

Reminder: All of our rings have 1 and are commutative, and ring homomorphisms ¢ : A — B satisfy
p(1) = L.
-

Definition. A scheme is a geometric object which is locally an affine scheme.
N J

Analogy: A manifold is something which locally looks like an open subset of R™.

Definition 0.1 (Spectrum). Let A be a ring. Then

Spec = {p C A | P a prime ideal}.
\ J

Note: In general, if we have an L-valued point of X = Z(I) C A", we get a ring homomorphism
¢ : A(X) — L has image an integral subdomain of L, so ker ¢ is prime.

- N
Definition 0.2 (V(I)). For I C A an ideal, define

V(I)={P €SpecA|PDI}.

Proposition. The sets V(I) form the closed sets of a topology on Spec A, called the Zariski
topology.




Proof.

(1) V(A) =0
(2) V(0) =SpecA
(3) If {I;};es is a collection of ideals, then
- ().
JjeJ reJ
(easy!)
(4) V(I))UV(Iy) =V (I NI):

CIfPDOIior PDOIy, then PO I NIs.
:_) IfP211ﬂ127theIlP:_)Il OI‘P:_>[2.

See Atiyah + MacDonald, Prop 1.11 ii) [Try to prove it for yourself!]

Example. A = k[zy,...,x,] with k algebraically closed. For I C A, the maximal ideals of A
corresponding to points of Z(I) are precisely the maximal ideals containing I.



1 Sheaves

Fix a topological space X.

-
Definition 1.1 (Presheaf). A preasheaf F on X consists of data:

(1) For every open set U C X, an abelian group F(U).

(2) Whenever V. C U C X open, there is a restriction homomorphism pyy : F(U) — F(V)
such that pyy = idp) and ifWCV CU C X, then pyw = pvw © puv.

Remark. This is precisely a contravariant functor from the category of open sets [i.e. objects
are open sets U C X, morphisms are inclusions V' C U] to the category of abelian groups.
Can replace the category of abelian groups with your favourite category.

Definition 1.2 (Morphism of presheaves). If F, M are presheaves on X, then a morphism of
presheaves f : F — M is data of, for each U C X open, a group homomorphism fy : F(U) —
M(U) such that whenever V' C U, we have a commutative diagram

)
[ b e

s FU) L m@)
sly FV) L% mv)

Example. F(U) = {f: U — R continuous}. pyy : F(U) — F(V) is restriction of functions.

Definition 1.3 (Sheaf). A presheaf F on X is a sheaf if it satisfies:

(1) If U C X is covered by {U;} (U,U; C X open) and s € F(U) such that s|y, = pyu,(s) =0,
then s = 0.

(2) If U,{U;} are as is (1), and s; € F(U;) for each i such that s;|y,nv, = s;
then there exists s € F(U) such that s|y, = s; for all ¢ (gluing axiom).

v,nu; for all 4, 7,

Remark.
(1) If F is a sheaf, then F(@) = 0 since the empty cover is a cover of §.
(2) Properties (1) and (2) of the definition of a sheaf together can be stated by saying

N B
0— F(U) > @ FW) T : P FUinyy)
iel 2 i€l




is ezact, for all U C X open and open covers {U;} of U.

Here,

a(S)=(S
i iGI) = (Si UiﬂUr)i,jGI
B2((Si)ier) = (Sjluinu,.)ijer

U; )iEI

Exactness means:w

(1) « is injective (this is property (1) of a sheaf)
(2) p1oa= 0« (obvious)

(3) For any (S;) € @,c; F(Ui) with B1((S:)) = B2((S:)), there exists an s € F(U) with
a(S) = (S;). (this is property (2) of a sheaf)

Remark. « is the equalizer of (1, 82 (from category theory).

This definition works, even if e.g. we a set rather than abelian group.

Example.
(1) X any topological space
F(U) = {continuous functions f : U — R}

is a shealf.

(2) X = C with the Euclidean topology. Then for
FU)={f:U — C| f bounded and holomorphic}

gluing fails because one may not preserve boundedness.

(3) Let G be a group, and set F(U) = G for all U C X. pyy = id. This is a presheaf, known
as the constant presheaf. If we give G the discrete topology, set

F'(U) ={f: U — Gcontinuous}.
These are locally constant functions. Obviously a sheaf, called the constant sheaf.

(4) If X is a variety, denote by Ox (U) the set of regular functions f : U — k. Ox is a sheaf,
called the structure sheaf of X. See Part II AG for definitions of these.

Definition 1.4 (Stalk / germ). Let F be a presheaf on X, p € X. Then the stalk of f at p is
Fp :={(U,s) | U an open neighbourhood of p, s € F(U)}/ =
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where (U, s) = (V,t) if there exists W C U NV a neighbourhood of p such that s|w = t|w.
The equivalence class of (U, s) € F,, is written as s,, and is the germ of s at p.

Note that given a morphism f : F — G, we obtain f, : F, = G, via f,(U,s) = (U, fu(s))-

Note that a morphism of sheaves is just a morphism of presheaves.

Proposition. Let f: F — G be a morphism of sheaves. Then f is an isomorphism if and only
if f, is an isomorphism for all p € X.

Proof.

= Obvious.
< Assume f, is an isomorphism for all p. We will show fi; : F(U) — G(U) is an isomorphism for all
U, and can then define the inverse to f by (f 1y = (fr)~!.

fu is injective: Suppose s € F(U), fu(s) =0. Thenfor allp € U, f,((U,s)) = (U, fu(s)) = (U,0) =
0 € G,. Thus s, = 0 since f, is injective. Thus there exists an open neighbourhoord V,, C U of p
such that sy, = 0. But {V},},ev covers U, so by (1) in the definition of a sheaf, we get s = 0.

fu is surjective: Let p € G(U). Then for all p € U, there exists s, € F, such that f,(sp) = tp,
i.e. there exists an open neighbourhood of p € U and a germ (V},, §,) representating s, such that
(Vp, fv,(3p)) = (U,t) = t,. Shrinking V}, if necessary, we can assume fy, (5,) = t[v, on V, NV,.
Then

fvonv, Bplv,nv, = 3¢lvenv,) = tlv,nv, — tlv,av, = 0.

Since we have shown fy, v, is injective, we get
§p|VpﬂVq = §q|meVq7
and by (2) in the definition of a sheaf, there exists s € F(U) such that s|y, = 5, for all p. Now
Ju(s)lv, = fv,(slv,) = fv,(8p) = tlv,.

Thus fy(s) —t =0 by (1) in the definition of a sheaf, i.e. fy(s) =+¢. Thus fy is surjective. O

Remark. If instead f, : F, = G, is injective for all p, then fy : F(U) — G(U) is still injective.
If instead f, : F, — Gp is surjective for all p, we need not have fy : F(U) — G(U) surjective
(we will see examples later).

Sheafification: Given a presheaf F, there exists a sheaf T and a morphism 6 : F — F7 satisfying
the following universal property:



For any sheaf G and a morphism ¢ : F — G, there exists a unique morphism ¢* : F* — G such that
P pt
X‘ l%’Jr
g
commutes. The pair (FT,6) is unique up to unique isomorphism.

Also, F,, = F,f via 0, for all p € X.
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