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0 Motivation

In Part II AG we defined an affine algebraic variety by:

Definition (Affine algebraic variety). We fix an algebraically closed field k and defined affine
n-space An

k := kn, and for an ideal I ≤ k[x1, . . . , xn] we defined

Z(I) := {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 ∀f ∈ I} ⊆ An
k .

We define a topology on An by taking the closed sets to be the sets of the form Z(I) ⊆ An.

We will introduce schemes.

Why schemes?

Why not varieties?

(1) With varieties, we always work with algebraically closed fields. For example, take k = R, I =
(x2 + y2 + 1) ⊆ R[x, y]. Then Z(I) = ∅.

(2) Number theory? We study Diophantine equations, i.e. I ⊆ Z[x1, . . . , xn]. So Z(I) ⊆ Zn.

(3) Even if k is algebraically closed, we lose information when we pass from I to Z(I). For example,
I = (x2) ⊆ C[x]. Then Z(I) = {0} = Z(x).
Recall Hilbert’s Nullstellensatz, which states that the set of polynomials in k[x1, . . . , xn] vanishing
on Z(I) for I ⊆ k[x1, . . . , xn] is the radical of I.
But it is natural ideals like (x2).
(y − x2, y − α) ⊆ C[x, y] (α ∈ C).

If x = 0, (x2 − y, y − α) = (x2, y).

0.1 Categorical philosophy

(Read definition on Wikipedia or see CT).
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Let Sets be the category of sets.

Sets is the category with objects being all sets, with morphisms between objects maps of sets. If
X and Y are sets, we write Hom(X,Y ) for the set of maps between X and Y . Note that there is a
bijection

Hom({∗}, X) → X

(f : {∗} → X) 7→ f(∗)

Let’s use this philosophy to understand points on affine algebraic varieties.

A0
k is a point. If X is an affine variety, then the points of X should be in 1 − 1 correspondence with

Hom(A0
k, X). Giving a morphism between affine varieties is easy. Denote by A(X) (sometimes k[X])

the coordinate ring (A(X) = k[x1, . . . , xn]/I(X), where I(X) is the ideal of functions that vanish
on X). This is a k-algebra. We showed that if X and Y are affine varieties, then Hom(X,Y ) =
Homk-alg(A(Y ), A(X)) (see Part II AG or handout). So

Hom(A0
k, X) = Homk-alg(k[x1, . . . , xn]/I(X), k).

Note that giving a k-algebra homomorphism

k[x1, . . . , xn] → k

can be done by specifying the images of xi can be done by specifying the images of xi, say xi 7→ ai such
that for any f ∈ I(X), f(a1, . . . , an) = 0. So there is a 1− correspondence between such k-algebra
homomorphisms and points of X.

If k is algebraically closed, the maximal ideals of k[x1, . . . , xn] are precisely the ideals of the form
(x1 − a1, . . . , xn − an) for (a1, . . . , an) ∈ An (a form of Hilbert Nullstellensatz) and the maximal ideals
of A(X) are of the form (x1 − a1, . . . , xn − an) mod I(X) with (a1, . . . , an) ∈ X. Thus we have a 1− 1
correspondence between points of X and maximal ideals of A(X).

Now suppose k is not algebraically closed. Let’s consider k-algebra homomorphisms

k[x1, . . . , xn]/I(X) = A(X) → L
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where L is an extension of k. These are given by xi 7→ ai with f(a1, . . . , an) = 0 for all f ∈ I(X).
Thus

Homk(A(X), L) = {(a1, . . . , an) ∈ An
L | f(a1, . . . , an) = 0 ∀f ∈ I(X)}.

In other words: the k-algebra homomorphisms A(X) → L correspond to L-valued points, i.e. points
with coordinates in L.

Could work over Z. Take an ideal I ⊆ Z[x1, . . . , xn], and set

A = Z[x1, . . . , xn]/I.

Ring homomorphisms A → Z are 1−1 correspondence with (a1, . . . , an) ∈ Zn such that f(a1, . . . , an) =
0 ∀f ∈ I. Maps A → Fp give “solutions” modp, or maps A → Q give rational solutions.

What we want: Given an extension of A,e we want to define a gadget X = SpecA (spectrum of A),
and an R-valued point of X is a ring homomorphism A → R. We write the set of R-valued points as

X(R) := HomRing(A,R).

Morphisms SpecB → SpecA should be the same as ring homomorphisms A → B.

Definition (Category of affine schemes). The category of affine schemes is the opposite category
of rings.

Reminder: All of our rings have 1 and are commutative, and ring homomorphisms ϕ : A → B satisfy
ϕ(1) = 1.

Definition. A scheme is a geometric object which is locally an affine scheme.

Analogy: A manifold is something which locally looks like an open subset of Rn.

Definition 0.1 (Spectrum). Let A be a ring. Then

Spec = {p ⊆ A | P a prime ideal}.

Note: In general, if we have an L-valued point of X = Z(I) ⊆ An, we get a ring homomorphism
ϕ : A(X) → L has image an integral subdomain of L, so kerϕ is prime.

Definition 0.2 (V (I)). For I ⊆ A an ideal, define

V (I) = {P ∈ SpecA | P ⊇ I}.

Proposition. The sets V (I) form the closed sets of a topology on SpecA, called the Zariski
topology.
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Proof.

(1) V (A) = ∅

(2) V (0) = SpecA

(3) If {Ij}j∈J is a collection of ideals, then

⋂
j∈J

V (Ij) = V

(∑
r∈J

Ij

)
.

(easy!)

(4) V (I1) ∪ V (I2) = V (I1 ∩ I2):

⊆ If P ⊇ I1 or P ⊇ I2, then P ⊇ I1 ∩ I2.
⊇ If P ⊇ I1 ∩ I2, then P ⊇ I1 or P ⊇ I2.

See Atiyah + MacDonald, Prop 1.11 ii) [Try to prove it for yourself!]

Example. A = k[x1, . . . , xn] with k algebraically closed. For I ⊆ A, the maximal ideals of A
corresponding to points of Z(I) are precisely the maximal ideals containing I.
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1 Sheaves

Fix a topological space X.

Definition 1.1 (Presheaf). A preasheaf F on X consists of data:

(1) For every open set U ⊆ X, an abelian group F(U).

(2) Whenever V ⊆ U ⊆ X open, there is a restriction homomorphism ρUV : F(U) → F(V )
such that ρUU = idF (U) and if W ⊆ V ⊆ U ⊆ X, then ρUW = ρVW ◦ ρUV .

Remark. This is precisely a contravariant functor from the category of open sets [i.e. objects
are open sets U ⊆ X, morphisms are inclusions V ⊆ U ] to the category of abelian groups.
Can replace the category of abelian groups with your favourite category.

Definition 1.2 (Morphism of presheaves). If F ,M are presheaves on X, then a morphism of
presheaves f : F → M is data of, for each U ⊆ X open, a group homomorphism fU : F(U) →
M(U) such that whenever V ⊆ U , we have a commutative diagram

s F(U) M(U)

s|V F(V ) M(V )

fU

ρF
UV ρM

UV

fV

.

Example. F(U) = {f : U → R continuous}. ρUV : F(U) → F(V ) is restriction of functions.

Definition 1.3 (Sheaf). A presheaf F on X is a sheaf if it satisfies:

(1) If U ⊆ X is covered by {Ui} (U,Ui ⊆ X open) and s ∈ F(U) such that s|Ui
= ρUUi

(s) = 0,
then s = 0.

(2) If U, {Ui} are as is (1), and si ∈ F(Ui) for each i such that si|Ui∩Uj
= sj |Ui∩Uj

for all i, j,
then there exists s ∈ F(U) such that s|Ui = si for all i (gluing axiom).

Remark.

(1) If F is a sheaf, then F(∅) = 0 since the empty cover is a cover of ∅.

(2) Properties (1) and (2) of the definition of a sheaf together can be stated by saying

0 → F (U)
α→
⊕
i∈I

F(Ui)
β1

β2

⊕
i,j∈I

F(Ui ∩ Uj)
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is exact, for all U ⊆ X open and open covers {Ui} of U .
Here,

α(S) = (S|Ui
)i∈I

β1((Si)i∈I) = (Si|Ui∩Ur
)i,j∈I

β2((Si)i∈I) = (Sj |Ui∩Ur
)i,j∈I

Exactness means:w

(1) α is injective (this is property (1) of a sheaf)
(2) β1 ◦ α = β2 ◦ α (obvious)
(3) For any (Si) ∈

⊕
i∈I F(Ui) with β1((Si)) = β2((Si)), there exists an s ∈ F(U) with

α(S) = (Si). (this is property (2) of a sheaf)

Remark. α is the equalizer of β1, β2 (from category theory).

This definition works, even if e.g. we a set rather than abelian group.

Example.

(1) X any topological space

F(U) = {continuous functions f : U → R}

is a sheaf.

(2) X = C with the Euclidean topology. Then for

F(U) = {f : U → C | f bounded and holomorphic}

gluing fails because one may not preserve boundedness.

(3) Let G be a group, and set F(U) = G for all U ⊆ X. ρUV = id. This is a presheaf, known
as the constant presheaf. If we give G the discrete topology, set

F ′(U) = {f : U → Gcontinuous}.

These are locally constant functions. Obviously a sheaf, called the constant sheaf.

(4) If X is a variety, denote by OX(U) the set of regular functions f : U → k. OX is a sheaf,
called the structure sheaf of X. See Part II AG for definitions of these.

Definition 1.4 (Stalk / germ). Let F be a presheaf on X, p ∈ X. Then the stalk of f at p is

Fp := {(U, s) | U an open neighbourhood of p, s ∈ F(U)}/ ≡
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where (U, s) ≡ (V, t) if there exists W ⊆ U ∩ V a neighbourhood of p such that s|W = t|W .
The equivalence class of (U, s) ∈ Fp is written as sp, and is the germ of s at p.

Note that given a morphism f : F → G, we obtain fp : Fp → Gp via fp(U, s) = (U, fU (s)).

Note that a morphism of sheaves is just a morphism of presheaves.

Proposition. Let f : F → G be a morphism of sheaves. Then f is an isomorphism if and only
if fp is an isomorphism for all p ∈ X.

Proof.

⇒ Obvious.

⇐ Assume fp is an isomorphism for all p. We will show fU : F(U) → G(U) is an isomorphism for all
U , and can then define the inverse to f by (f−1)U = (fU )

−1.
fU is injective: Suppose s ∈ F(U), fU (s) = 0. Then for all p ∈ U , fp((U, s)) = (U, fu(s)) = (U, 0) =
0 ∈ Gp. Thus sp = 0 since fp is injective. Thus there exists an open neighbourhoord Vp ⊆ U of p
such that s|Vp

= 0. But {Vp}p∈U covers U , so by (1) in the definition of a sheaf, we get s = 0.
fU is surjective: Let p ∈ G(U). Then for all p ∈ U , there exists sp ∈ Fp such that fp(sp) = tp,
i.e. there exists an open neighbourhood of p ∈ U and a germ (Vp, s̃p) representating sp such that
(Vp, fVp

(s̃p)) = (U, t) = tp. Shrinking Vp if necessary, we can assume fVp
(s̃p) = t|Vp

on Vp ∩ Vq.
Then

fVp∩Vq
(s̃p|Vp∩Vq

− s̃q|Vp∩Vq
) = t|Vp∩Vq

− t|Vp∩Vq
= 0.

Since we have shown fVp∩Vq
is injective, we get

s̃p|Vp∩Vq = s̃q|Vp∩Vq ,

and by (2) in the definition of a sheaf, there exists s ∈ F(U) such that s|Vp = s̃p for all p. Now

fU (s)|Vp
= fVp

(s|Vp
) = fVp

(s̃p) = t|Vp
.

Thus fU (s)− t = 0 by (1) in the definition of a sheaf, i.e. fU (s) = t. Thus fU is surjective.

Remark. If instead fp : Fp → Gp is injective for all p, then fU : F(U) → G(U) is still injective.
If instead fp : Fp → Gp is surjective for all p, we need not have fU : F(U) → G(U) surjective
(we will see examples later).

Sheafification: Given a presheaf F , there exists a sheaf F+ and a morphism θ : F → F+ satisfying
the following universal property:
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For any sheaf G and a morphism ϕ : F → G, there exists a unique morphism ϕ+ : F+ → G such that

F F+

G

θ

ϕ
ϕ+

commutes. The pair (F+, θ) is unique up to unique isomorphism.

Also, Fp
∼= F+

p via θp for all p ∈ X.
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