%! TEX root = AC.tex % vim: tw=50 % 07/11/2024 10AM \begin{example}[Behrend's example] % Example 2.21 There exists $A \subseteq [N]$ of size at least $|A| \ge \exp(-c\sqrt{\log N}) N$ containing no non-trivial 3 term arithmetic progressions. \end{example} \begin{fclemma}[] \label{lemma_2_22} % Lemma 2.22 Assuming: - $A \subseteq [N]$ of density $\alpha > 0$ - $N > 50 \alpha^{-2}$ - $A$ contains no non-trivial 3 term arithmetic progressions - $p$ a prime in $\left[ \frac{N}{3}, \frac{2N}{3} \right]$ - let $A' = A \cap [p] \subseteq \Zbb / p\Zbb$ Then: one of the following holds: \begin{enumerate}[(i)] \item $\sup_{t \neq 0} |\ft{\indicator{A'}}(t)| \ge \frac{\alpha^2}{10}$ (where the Fourier coefficient is computed in $\Zbb / p\Zbb$) \item There exists an interval $J \subseteq [N]$ of length $\ge \frac{N}{3}$ such that $|A \cap J| \ge \alpha \left( 1 + \frac{\alpha}{400} \right) |J|$ \end{enumerate} \end{fclemma} \begin{proof} We may assume that $|A'| = |A \cap [p]| \ge \alpha \left( 1 - \frac{\alpha}{200} \right) p$ since otherwise \begin{align*} |A \cap [p + 1, N]| &\ge \alpha N - \left( \alpha \left( 1 - \frac{\alpha}{200} \right) p \right) \\ &= \alpha (N - p) + \frac{\alpha^2}{200} p \\ &\ge \left( \alpha + \frac{\alpha^2}{400} \right) (N - p) \end{align*} so we would be in Case (ii) with $J = [p + 1, N]$. Let $A'' = A' \cap \left[ \frac{p}{3}, \frac{2p}{3} \right]$. Note that all 3 term arithmetic progressions of the form $(x, x + d, x + 2d) \in A' \times A'' \times A''$ are in fact arithmetic progressions in $[N]$. If $|A' \cap \left[ \frac{p}{3} \right] |$ or $|A' \cap \left[ \frac{2p}{3}, p \right]|$ were at least $\frac{2}{5} |A'|$, we would again be in case (ii). So we may assume that $|A''| \ge \frac{|A'|}{5}$. Now as in \cref{lemma_2_18} and \cref{thm_2_19}, \begin{align*} \frac{\alpha''}{p} &= \frac{|A''|}{p^2} \\ \T_3(\indicator{A'}, \indicator{A''}, \indicator{A''}) \\ &= \alpha' (\alpha'')^2 + \sum_{t} \ol{\ft{\indicator{A'}}(t) \ft{\indicator{A''}}(t)} \ft{\indicator{2 \stimes A''}}(t) \end{align*} where $\alpha' = \frac{|A'|}{p}$ and $\alpha'' = \frac{|A''|}{p}$. So as before, \[ \frac{\alpha' \alpha''}{2} \le \sup_{t \neq 0} |\indicator{A'}(t)| \cdot \alpha'' ,\] provided that $\frac{\alpha''}{p} \le \half \alpha' (\alpha'')^2$, i.e. $\frac{2}{p} \le \alpha' \alpha''$. (Check this is satisfied). Hence \[ \sup_{t \neq 0} |\ft{\indicator{A'}}(t)| \ge \frac{\alpha' \alpha''}{2} \ge \half \left( \alpha \left( 1 - \frac{\alpha}{200} \right) \right)^2 \cdot \frac{2}{5} \ge \frac{\alpha^2}{10} . \qedhere \] \end{proof} \begin{fclemma}[] \label{lemma_2_23} % Lemma 2.23 Assuming: - $m \in \Nbb$ - $\varphi : [m] \to \Zbb / p\Zbb$ be given by $x \mapsto tx$ for some $t \neq 0$ - $\eps > 0$ Then: there exists a partition of $[m]$ into progressions $P_i$ of length $l_i \in \left[ \frac{\eps \sqrt{m}}{2}, \eps \sqrt{m} \right]$ such that \[ \diam(\varphi(P_i)) = \max_{x, y \in P_i} |\varphi(x) - \varphi(y)| \le \eps p \] for all $i$. \end{fclemma} \begin{proof} Let $u = \left\lfloor \sqrt{m} \right\rfloor$ and consider $0, t, 2t, \ldots, ut$. By Pigeonhole, there exists $0 \le v < w \le u$such that $|wt - vt| = |(w - v)t| \le \frac{p}{u}$. Set $s = w - v$, so $|st| \le \frac{p}{u}$. Divide $[m]$ into residue classes modulo $s$, each of which has size at least $\frac{m}{s} \ge \frac{m}{4}$. But each residue class can be divided into arithmetic progressions of the form $a, a + s, \ldots, a + ds$ with $\eps \frac{u}{2} < d \le \eps u$. The diameter of the image of each progression under $\varphi$ is $|dst| \le d \frac{p}{u} \le \eps u \frac{p}{u} = \eps p$. \end{proof} \begin{fclemma}[] % Lemma 2.24 Assuming: - $A \subseteq [N]$ of density $\alpha > 0$ - $p$ a prime in $\left[ \frac{N}{3}, \frac{2N}{3} \right]$ - let $A' = A \cap [p] \subseteq \Zbb / p\Zbb$ - $|\ft{\indicator{A'}}(t)| \ge \frac{\alpha^2}{20}$ for some $t \neq 0$ Then: there exists a progression $P \subseteq [N]$ of length at least $\alpha^2 \frac{\sqrt{N}}{500}$ such that $|A \cap P| \ge \alpha \left( 1 + \frac{\alpha}{80} \right) |P|$. \end{fclemma}