%! TEX root = AC.tex % vim: tw=50 % 05/11/2024 10AM \begin{notation*} \glssymboldefn{T}% Given $f, g, h : G \to \Cbb$, write \[ T_3(f, g, h) = \EG{x, d}{G} f(x) g(x + d) h(x + 2d) .\] \end{notation*} \begin{notation*} \glssymboldefn{stimes}% Given $A \subseteq G$, write \[ 2 \cdot A = \{2a : a \in A\} ,\] to be distinguished from $2A = A \plus A = \{a + a' : a, a' \in A\}$. \end{notation*} \begin{fclemma}[] \label{lemma_2_18} % Lemma 2.18 Assuming: - $p \ge 3$ prime - $A \subseteq \Fp^n$ of density $\alpha > 0$ - $\sup_{t \neq 0} |\ft{\indicator{A}}(t)| \le \eps$ Then: the number of 3-term arithmetic progressions in $A$ differs from $\alpha^3 (p^n)^2$ by at most $\eps(p^n)^2$. \end{fclemma} \begin{proof} The number of 3-term arithmetic progressions in $A$ is $(p^n)^2$ times \begin{align*} \T_3(\indicator{A}, \indicator{A}, \indicator{A}) &= \EG{x, d}{\Fp^n} \indicator{A}(x)\indicator(x + d) \indicator{A}(x + 2d) \\ &= \EG{x, y}{\Fp^n} \indicator{A}(x) \indicator{A}(y) \indicator{A}(2y - x) \\ &= \EG{y}{G} \indicator{A}(y) \EG{x}{G} \indicator{A}(x) \indicator{A}(2y - x) \\ &= \EG yG \indicator{A}(y) \indicator{A} \conv \indicator{A} (2y) \\ &= \langle \indicator{2 \stimes A}, \indicator{A} \conv \indicator{A} \rangle \end{align*} By \gls{planche} and \cref{lemma_2_13}, we have \begin{align*} &= \langle \ft{\indicator{2 \stimes A}}, \ft{\indicator{A}}^2 \rangle \\ &= \sum_{t} \ft{\indicator{2 \stimes A}}(t) \ol{\ft{\indicator{A}}(t)^2} \\ &= \alpha^3 + \sum_{t \neq 0} \ft{\indicator{2 \stimes A}}(t) \ol{\ft{\indicator{A}}(t)^2} \end{align*} but \begin{align*} \left| \sum_{t \neq 0} \ft{\indicator{2 \stimes A}}(t) \ft{\indicator{A}}(t)^2 \right| &\le \sup_{t \neq 0} |\ft{\indicator{A}}(t)| \sum_{t \neq 0} |\ft{\indicator{2 \stimes A}}(t)| |\ft{\indicator{A}}(t)| \\ &\stackrel{\text{CS}}{\le} \sup_{t \neq 0} |\ft{\indicator{A}}(t)| \left( \sum_{t} |\ft{\indicator{2 \stimes A}}(t)|^2 \sum_{t} |\ft{\indicator{A}}(t)|^2 \right)^{\half} \\ &\le \eps \|\ft{\indicator{2 \stimes A}}\|_2 \|\ft{\indicator{A}}\|_2 \\ &= \eps \cdot \alpha \end{align*} by \gls{parse}. \end{proof} \begin{fcthm}[Meshulam's Theorem] \label{thm_2_19} % Theorem 2.19 Assuming: - $A \subseteq \Fp^n$ a set containing no non-trivial 3 term arithmetic progressions Then: $|A| = O \left( \frac{p^n}{\log p^n} \right)$. \end{fcthm} \begin{proof} By assumption, \[ \T_3(\indicator{A}, \indicator{A}, \indicator{A}) = \frac{|A|}{(p^n)^2} = \frac{\alpha}{p^n} .\] But as in (the proof of) \cref{lemma_2_18}, \[ |\T_3(\indicator{A}, \indicator{A}, \indicator{A}) - \alpha^3| \le \sup_{t \neq 0} |\ft{\indicator{A}}(t)| \cdot \alpha ,\] so provided $p^n \ge 2 \alpha^{-2}$, i.e. $\T_3(\indicator{A}, \indicator{A}, \indicator{A}) \le \frac{\alpha^3}{2}$ we have $\sup_{t \neq 0} |\ft{\indicator{A}}(t)| \ge \frac{\alpha^2}{2}$. So by \cref{lemma_2_17} with $\rho = \frac{\alpha}{2}$, there exists $V \le \Fp^n$ of codimension 1 and $x \in \Fp^n$ such that $|A \cap (x + V)| \ge \left( \alpha + \frac{\alpha^2}{4} \right) |V|$. We iterate this observation: let $A_0 = A$, $V_0 = \Fp^n$, $\alpha_0 = \frac{|A_0|}{|V_0|}$. At the $i$-th step, we are given a set $A_{i - 1} \subseteq V_{i - 1}$ of density $\alpha_{i - 1}$ with no non-trivial 3 term arithmetic progressions. Provided that $p^{\dim(V_{i - 1})} \ge 2 \alpha_{i - 1}^{-2}$, there exists $V_i \le V_{i - 1}$ of codimension $1$, $x_i \in V_{i - 1}$ such that \[ |(A \minus x_i) \cap V_i| \ge \left( \alpha_{i - 1} + \frac{(\alpha_{i - 1})^2}{4} \right) |V_i| .\] Set $A_i = (A \minus x_i) \cap V_i \subseteq V_i$, has density $\ge \alpha_{i - 1} + \frac{(\alpha_{i - 1})^2}{4}$, and is free of non-trivial 3 term arithmetic progressions. Through this iteration, the density increases from $\alpha$ to $2\alpha$ in at most $\frac{\alpha}{\left( \frac{\alpha^2}{4} \right)} = 4 \cdot \alpha^{-1}$ steps. $2\alpha$ to $4\alpha$ in at most $\frac{2\alpha}{\left( \frac{(2\alpha)^2}{4} \right)} = 2\alpha^{-1}$ steps and so on. So reaches $1$ in at most \[ 4\alpha^{-1} \left( 1 + \half + \quarter + \frac{1}{8} + \cdots \right) \le 8\alpha^{-1} \] steps. The argument must end with $\dim(V_i) \ge n - 8\alpha^{-1}$, at which point we must have had $p^{\dim(V_i)} < 2\alpha_{i - 1}^2 \le 2\alpha^{-2}$, or else we could have continued. But we may assume that $\alpha \ge \sqrt{2} p^{-\frac{n}{4}}$ (or $\alpha^{-2} < 2p^{\frac{n}{2}}$) whence $p^{n - 8\alpha^{-1}} \le p^{\frac{n}{2}}$, or $\frac{n}{2} \le 2\alpha^{-1}$. \end{proof} At the time of writing, the largest known subset of $\Fbb_{3}^n$ containing no non-trivial 3 term arithmetic progressions has size $(2.2202)^n$. We will prove an upper bound of the form $(2.756)^n$. \begin{fcthm}[Roth's theorem] \label{thm_2_20} % Theorem 2.20 Assuming: - $A \subseteq [N] = \{1, \ldots, N\}$ - $A$ contains no non-trivial 3 term arithmetic progressions Then: $|A| = O \left( \frac{N}{\log\log N} \right)$. \end{fcthm}