%! TEX root = AC.tex % vim: tw=50 % 31/10/2024 10AM \begin{fcdefn}[Convolution] \glssymboldefn{conv}% % Definition 2.11 Given $f, g : G \to \Cbb$, we define their \emph{convolution} $f * g : G \to \Cbb$ by \[ f * g(x) = \EG yG f(y) g(x - y) \qquad \forall x \in G .\] \end{fcdefn} \begin{example} % Example 2.12 Given $A, B \subseteq G$, \[ \indicator{A} \conv \indicator{B}(x) = \EG yG \indicator{A}(y) \indicator{B}(x - y) = \EG yG \indicator{A}(y) \indicator{x - B}(y) = \frac{|A \cap (x - B)|}{|G|} = \frac{1}{|G|} \rcount_{A + B}(x) .\] In particular, $\operatorname{supp}(\indicator{A} \conv \indicator{B}) = A \plus B$. \end{example} \begin{fclemma}[] \label{lemma_2_13} % Lemma 2.13 Assuming: - $f, g : G \to \Cbb$ Then: \[ \ft{f \conv g}(\gamma) = \ft f(\gamma) \ft g(\gamma) \forall \gamma \in \charG .\] \end{fclemma} \begin{proof} \begin{align*} \ft{f \conv g}(\gamma) &= \EG xG f \conv g(x) \ol{\gamma(x)} \\ &= \EG xG \EG[y]G f(y) g(\ub{x - y}_{u}) \ol{\gamma(x)} \\ &= \EG uG \EG[y]G f(y) g(u) \ol{\gamma(u + y)} \\ &= \ft f(\gamma)\ft g(\gamma) \qedhere \end{align*} \end{proof} \begin{example} % Example 2.14 \[ \Ebb_{x + y = z + w} f(x) f(y) \ol{f(z) f(w)} = \|\ft f\|_{l^4(\charG)}^4 .\] In particular, \[ \|\ft{\indicator{A}}\|_{l^4(\charG)}^4 = \frac{\energy(A)}{|G|^3} \] for any $A \subseteq G$. \end{example} \begin{fcthm}[Bogolyubov's lemma] % Theorem 2.15 Assuming: - $A \subseteq \Fp^n$ be a set of density $\alpha$ Then: there exists $V \le \Fp^n$ of codimension $\le 2\alpha^{-2}$ such that $V \subseteq A \plus A \minus A \minus A$. \end{fcthm} \begin{proof} Observe \[ \mdiff 2A - 2A = \supp(\ub{\indicator{A} \conv \indicator{A} \conv \indicator{-A} \conv \indicator{-A}}_{\eqdef g}) ,\] so wish to find $V \le \Fp^n$ such that $g(x) > 0$ for all $x \in V$. Let $S = \Spec_\rho(\indicator{A})$ with $\rho = \sqrt{\frac{\alpha}{2}}$ and let $V = \langle S \rangle^{\perp}$. By \cref{lemma_2_10}, $\codim(V) \le |S| \le \rho^{-2} \alpha^{-1}$. Fix $x \in V$. \begin{align*} g(x) &= \sum_{t \in \charG[\Fp^n]} \ft g(t) \e(x \cdot t / p) \\ &= \sum_{t \in \charG[\Fp^n]} |\ft{\indicator{A}}(t)|^4 \e(x \cdot t / p) &&\text{by \cref{lemma_2_13}} \\ &= \alpha^4 + \sum_{t \neq 0} |\ft{\indicator{A}}(t)|^4 \e(x \cdot t / p) \\ &= \alpha^4 + \ub{\sum_{t \in S \setminus \{0\}} |\ft{\indicator{A}}(t)|^4 \e(x \cdot t / p)}_{(1)} + \ub{\sum_{t \notin S} |\ft{\indicator{A}}(t)|^4 \e(x \cdot t / p)}_{(2)} \end{align*} Note $(1) \ge (\rho \alpha)^4$ since $x \cdot t = 0$ for all $t \in S$ and \begin{align*} |(2)| &\le \sup_{t \notin S} |\ft{\indicator{A}}(t)|^2 \sum_{t \notin S} |\ft{\indicator{A}}|^2 \\ &\le \sup_{t \in S} |\ft{\indicator{A}}(t)|^2 \sum_{t \notin S} |\ft{\indicator{A}}|^2 \\ &\le (\rho \alpha)^2 \|\indicator{A}\|_2^2 &&\text{by \gls{parse}} \\ &= \rho^2 \alpha^3 \end{align*} hence $g(x) > 0$ (in fact, $\ge \frac{\alpha^4}{2}$) for all $x \in V$ and $\codim(V) \le 2\alpha^{-2}$. \end{proof} \begin{example} % Example 2.16 The set $A = \{x \in \Fbb_2^n : |x| \ge \frac{n}{2} + \frac{\sqrt{n}}{2}\}$ (where $|x|$ counts the number of 1s in $x$) has density $\ge \frac{1}{8}$, but there is no coset $C$ of any subspace of codimension $\sqrt{n}$ such that $C \subseteq A \plus A (= A \minus A)$. \end{example} \begin{fclemma}[] \label{lemma_2_17} % Lemma 2.17 Assuming: - $A \subseteq \Fp^n$ of density $\alpha$ - $\rho > 0$ - $\sup_{t \neq 0} |\ft{\indicator{A}}(t)| \ge \rho \alpha$ Then: there exists $V \le \Fp^n$ of codimension $1$ and $x \in \Fp^n$ such that \[ |A \cap (x + V)| \ge \alpha \left( 1 + \frac{\rho}{2} \right) |V| .\] \end{fclemma} \begin{center} \includegraphics[width=0.3\linewidth]{images/e7e79921ff454fb9.png} \end{center} \begin{proof} Let $t \neq 0$ be such that $|\ft{\indicator{A}}(t)| \ge \rho \alpha$, and let $V = \langle t \rangle^\perp$. Write $v_j + V$ for $j \in [p] = \{1, 2, \ldots, p\}$ for the $p$ distinct cosets $v_j + V = \{x \in \Fp^n : x \cdot t = j\}$ of $V$. Then \begin{align*} \ft{\indicator{A}}(t) &= \ft{\balf}(t) \\ &= \EG x{\Fp^n} (\indicator{A}(x) - \alpha)\e(-x \cdot t / p) \\ &= \EG j{[p]} \EG x{v_j + V} (\indicator{A}(x) - \alpha)\e(-j / p) \\ &= \EG j{[p]} \left(\ub{\frac{|A \cap (v_j + V)|}{|v_j + V|} - \alpha}_{= a_j}\right) \e(-j / p) \end{align*} By triangle inequality, $\EG j{[p]} |a_j| \ge \rho \alpha$. But note that $\EG j{[p]} a_j = 0$ so $\EG j{[p]} a_j + |a_j| \ge \rho \alpha$, hence there exists $j \in [p]$ such that $a_j + |a_j| \ge \rho \alpha$. Then $a_j \ge \frac{\rho \alpha}{2}$. \end{proof}