%! TEX root = AC.tex % vim: tw=50 % 29/10/2024 10AM It is easy to verify the inversion formula: for all $x \in G$, \[ f(x) = \sum_{\gamma \in \charG} \ft{f}(\gamma) \gamma(x) .\] Indeed, \begin{align*} \sum_{\gamma \in \charG} \ft f(\gamma) \gamma(x) &= \sum_{\gamma \in \charG} \EG yG f(y) \ol{\gamma(y)} \gamma(x) \\ &= \EG yG f(y) \ub{\sum_{\gamma \in \charG} \gamma(x - y)}_{=|G| \text{ iff $x = y$}} \\ &= f(x) &&\text{by \cref{lemma_2_2}} \end{align*} Given $A \subseteq G$, the \emph{indicator} or \emph{characteristic function} of $A$, $\indicator{A} : G \to \{0, 1\}$ is defined as usual. Note that \[ \ft{\indicator{A}}(1) = \EG xG \indicator{A}(x) 1(x) = \frac{|A|}{|G|} .\] The \emph{density} of $A$ in $G$ (often denoted by $\alpha$). \begin{definition*}[Characteristic measure] \glssymboldefn{cmu}% \glsnoundefn{charm}{characteristic measure}{characteristic measures}% Given non-empty $A \subseteq G$, the \emph{characteristic measure} $\mu_A : G \to [0, |G|]$ is defined by $\mu_A(x) = \alpha^{-1} \indicator{A}(x)$. Note that $\EG xG \mu_A(x) = 1 = \ft{\mu_A}(1)$. \end{definition*} \begin{definition*}[Balanced function] \glssymboldefn{bf}% The \emph{balanced function} $f_A : G \to [-1, 1]$ is given by $f_A(x) = \indicator{A}(x) - \alpha$. Note that $\EG xG f_A(x) = 0 = \ft{f_A}(1)$. \end{definition*} \begin{example} \label{eg_2_4} % Example 2.4 Let $V \le \Fp^n$ be a subspace. Then for $t \in \charG[\Fp^n]$, we have \begin{align*} \ft{\indicator{V}}(t) &= \EG x{\Fp^n} \indicator{V}(x) e \left( - \frac{x \cdot t}{p} \right) \\ &= \frac{|V|}{p^n} \indicator{V^\perp}(t) \end{align*} where $V^\perp = \{t \in \charG[\Fp^n] : x \cdot t = 0 ~ \forall x \in V\}$ is the \emph{annihilator} of $V$. In other words, $\ft{\indicator{V}}(t) = \cmeas[V^\perp](t)$. \end{example} \begin{example} \label{eg_2_5} % Example 2.5 Let $R \subseteq G$ be such that each $x \in G$ lies in $R$ independently with probability $\half$. Then with high probability \[ \sup_{\gamma \neq 1} |\ft{\indicator{R}}(\gamma)| = O \left( \sqrt{\frac{\log|G|}{|G|}} \right) .\] \glsnoundefn{chern}{Chernoff's inequality}{NA}% This follows from \emph{Chernoff's inequality}: Given $\Cbb$-valued independent random variables $X_1, X_2, \ldots, X_n$ with mean $0$, then for all $\theta > 0$, we have \[ \Pbb \left( \left| \sum_{i = 1}^{n} X_i \right| \ge \theta \sqrt{\sum_{i = 1}^{n} \left\|X_i\right\|^2_{L^\infty(\Pbb)}} \right) \le 4\exp \left( -\frac{\theta^2}{4} \right) .\] \end{example} \begin{example} % Example 2.6 Let $Q = \{x \in \Fp^n : x \cdot x = 0\} \subseteq \Fp^n$ with $p > 2$. Then \[ \frac{|Q|}{p^n} = \frac{1}{p} + O(p^{-\frac{n}{2}}) \] and $\sup_{t \neq 0} |\ft{\indicator{Q}}(t)| = O(p^{-\frac{n}{2}})$. \end{example} Given $f, g : G \to \Cbb$, we write \[ \langle f, g \rangle = \EG xG f(x) \ol{g(x)} \qquad \text{and} \qquad \langle \ft f, \ft g \rangle = \sum_{\gamma \in \charG} \ft{f}(\gamma) \ol{\ft g(\gamma)} .\] Consequently, \[ \left\|f\right\|^2_{L^2(G)} = \EG xG |f(x)|^2 \qquad \text{and} \qquad \left\| \ft f \right\|^2_{l^2(\charG)} = \sum_{\gamma \in \charG} |\ft f(\gamma)|^2 .\] \glsnoundefn{planche}{Plancherel's identity}{NA} \glsnoundefn{parse}{Parseval's identity}{NA} \begin{fclemma}[] % Lemma 2.7 Assuming: - $f, g : G \to \Cbb$ Then: \begin{enumerate}[(i)] \item $\left\| f \right\|^2_{L^2(G)} = \left\| \ft f\right\|^2_{l^2(\charG)}$ (Parseval's identity) \item $\langle f, g \rangle = \langle \ft f, \ft g \rangle$ (Plancherel's identity) \end{enumerate} \end{fclemma} \begin{proof} Exercise (hopefully easy). \end{proof} \begin{fcdefn}[Spectrum] \glssymboldefn{spec}% \glsnoundefn{rls}{$\rho$-large spectrum of $f$}{NA}% % Definition 2.8 Let $1 \ge \rho > 0$ and $f : G \to \Cbb$. Define the \emph{$\rho$-large spectrum of $f$} to be \[ \operatorname{Spec}_\rho(f) = \{\gamma \in \charG : |\ft f(\gamma)| \ge \rho \left\| f \right\|_1\} .\] \end{fcdefn} \begin{example} % Example 2.9 By \cref{eg_2_4}, if $f = \indicator{V}$ with $V \le \Fp^n$, then $\forall \rho > 0$, \[ \Spec_\rho(\indicator{V}) = \left\{ t \in \charG[\Fp^n] : |\ft{\indicator{V}}(t)| \ge \rho \frac{|V|}{p^n} \right\} = V^\perp .\] \end{example} \begin{fclemma}[] \label{lemma_2_10} % Lemma 2.10 Assuming: - $\rho > 0$ Then: \[ |\Spec_\rho(f)| \le \rho^{-2} \frac{\left\| f \right\|_2^2}{\left\| f \right\|_1^2} .\] \end{fclemma} \begin{proof} By \gls{parse}, \begin{align*} \left\| f \right\|_2^2 &= \left\| \ft f \right\|_2^2 \\ &= \sum_{\gamma \in \charG} |\ft f(\gamma)|^2 \\ &\ge \sum_{\gamma \in \Spec_\rho(f)} |\ft f(\gamma)|^2 \\ &\ge |\Spec_\rho(f)| (\rho \left\| f \right\|_1)^2 \qedhere \end{align*} \end{proof} In particular, if $f = \indicator{A}$ for $A \subseteq G$, then \[ \left\| f \right\|_1 = \alpha = \frac{|A|}{|G|} = \left\| f \right\|_2^2 ,\] so $|\Spec_\rho(\indicator{A})| \le \rho^{-2} \alpha^{-1}$.