%! TEX root = AC.tex % vim: tw=50 % 24/10/2024 10AM Given $x \in G$, let $X(x) = A \cap (x + A)$. Then \[ \Ebb_{x \in Q} |X(x)| = \frac{1}{|Q|} \sum_{x \in Q} |A \cap (x + A)| \ge \half \lambda|A| .\] Let $T(x) = \{(a, b) \in X(x)^2 : a - b \notin \Pg[c\eta]\}$. Then \begin{align*} \Ebb_{X \in Q} |T(x)| &= \Ebb_{x \in Q} |\{(a, b) \in (A \cap (\ub{x}_{x \in A - a \cap A - b} + A))^2 : a - b \notin \Pg[c\eta]\}| \\ &= \frac{1}{|Q|} \sum_{x \in Q} |\{(a, b) \in S : x \in A - a \cap A - b\}| \\ &= \frac{1}{|Q|} \sum_{(a, b) \in S} |(A - a) \cap (A - b) \cap Q| \\ &\le \frac{1}{|Q|} 2c\eta |A|^2 \delta |Q| \\ &= 2c\eta \delta |A|^2 \\ &= 2c\lambda^2 |A|^2 \end{align*} Therefore, \begin{align*} \Ebb_{x \in Q} |X(x)|^2 - (16c)^{-1} |T(x)| &\stackrel{\text{C-S}}{\le} \left( \Ebb_{x \in Q} |X(x)| \right)^2 - (16c)^{-1} \Ebb_{x \in Q} |T(x)| \\ &\le \left( \frac{\lambda}{2} \right)^2 |A|^2 - (16c)^{-1} 2c\lambda^2 |A|^2 \\ &= \left( \frac{\lambda^2}{4} - \frac{\lambda^2}{8} \right)|A|^2 \\ &= \frac{\lambda^2}{8} |A| \end{align*} So there exists $x \in Q$ such that $|X(x)|^2 \ge \frac{\lambda^2}{8}|A|^2$, in which case we have \[ |X| \ge \frac{\lambda}{\sqrt{8}} |A| \ge \frac{\eta}{3} |A| \] and $|T(x)| \le 16c|X|^2$. \end{proof} \begin{proof}[Proof of \cref{bsg}] Given $A \subseteq G$ with $\energy(A) \ge \eta|A|^3$, apply \cref{lemma_1_19} with $c = 2^{-7}$ to otain $X \subseteq A$ of size $|X| \ge \frac{\eta}{3} |A|$ such that for all but $\frac{1}{8}$ of pairs $(a, b) \in X^2$, $a - b \in \Pg[\eta / 2^7]$. In particular, the bipartite graph \[ G = (X \djunion X, \{(x, y) \in X \times X : x - y \in \Pg[\eta / 2^7]\}) \] has at least $\frac{7}{8}|X|^2$ edges. Let $A' = \left\{x \in X : \deg(x) \ge \frac{3}{4}|X|\right\}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/15fd2d9fedbe40c8.png} \end{center} Clearly, $|A'| \ge \frac{|X|}{8}$. For any $a, b \in A'$, there are at least $\frac{|X|}{2}$ elements $y \in X$ such that $(a, y), (b, y) \in E(G)$ ($a - y, b - y \in \Pg[\eta / 2^7]$). Thus $a - b = (a - y) - (b - y)$ has at least \[ \ub{\frac{\eta}{6}|A|}_{\text{choices for $y$}} \cdot \frac{\eta}{2^7} |A| \cdot \frac{\eta}{2^7} |A| \ge \frac{\eta^3}{2^{17}} |A|^3 \] representations of the form $a_1 - a_2 - (a_3 - a_4)$ with $a_i \in A$. It follows that \begin{align*} \frac{\eta^3}{2^{17}} |A|^3 |A' \minus A'| &\le |A|^4 \\ \implies |A' \minus A'| &\le 2^{17} \eta^{-3} |A| \\ &\le 2^{22} \eta^{-4} |A'| \end{align*} Thus $|A' + A'| \le 2^{44} \eta^{-8} |A'|$. \end{proof} \newpage \section{Fourier-analytic techniques} In this chapter we will assume that $G$ is \emph{finite} abelian. \glssymboldefn{charG}% $G$ comes equipped with a group $\hat{G}$ of characters, i.e. homomorphisms $\gamma : G \to \Cbb$. In fact, $\hat{G}$ is isomorphic to $G$. See \href{https://notes.ggim.me/rt}{Representation Theory notes} for more information about characters and proofs of this as well as some of the facts below. \begin{example} % Example 2.1 \phantom{} \begin{enumerate}[(i)] \item \glssymboldefn{e}% If $G = \Fp^n$, then for any $\gamma \in \hat{G} = \Fp^n$, we have an associated character $\gamma(x) = e(\gamma \cdot x / p)$, where $e(y) = e^{2\pi i y}$. \item If $G = \Zbb / N\Zbb$, then any $\gamma \in \charG = \Zbb / N\Zbb$ can be associated to a character $\gamma(x) = e(\gamma x / N)$. \end{enumerate} \end{example} \begin{notation*} \glssymboldefn{EG}% Given $B \subseteq G$ nonempty, and any function $g : B \to \Cbb$, let \[ \Ebb_{x \in B} g(x) = \frac{1}{|B|} \sum_{x \in B} g(x) .\] \end{notation*} \begin{fclemma}[] \label{lemma_2_2} % Lemma 2.2 Assuming: - $\gamma \in \charG$ Then: \[ \EG xG \gamma(x) = \begin{cases} 1 & \text{if $\gamma = 1$} \\ 0 & \text{otherwise} \end{cases} ,\] and for all $x \in G$, \[ \sum_{\gamma \in \charG} \gamma(x) = \begin{cases} |\charG| & \text{if $x = 0$} \\ 0 & \text{otherwise} \end{cases} .\] \end{fclemma} \begin{proof} The first equality in eqch case is trivial. Suppose $\gamma \neq 1$. Then there exists $y \in G$ with $\gamma(y) \neq 1$. Then \begin{align*} \gamma(y) \EG zG \gamma(z) &= \EG zG \gamma(y + z) \\ &= \EG{z'}G \gamma(z') \end{align*} So $\EG zG \gamma(z) = 0$. For the second part, note that given $x \neq 0$, there must by $\gamma \in \charG$ such that $\gamma(x) \neq 1$, for otherwise $\charG$ would act trivially on $\langle x \rangle$, hence would also be the dual group for $G / \langle x \rangle$, a contradiction. \end{proof} \begin{fcdefn}[Fourier transform] \glssymboldefn{ft}% % Definition 2.3 Given $f : G \to \Cbb$, define its \emph{Fourier transform} $\hat{f} : \charG \to \Cbb$ by \[ \hat{f}(\gamma) = \EG xG f(x) \ol{\gamma(x)} .\] \end{fcdefn}