%! TEX root = AC.tex % vim: tw=50 % 22/10/2024 10AM In particular, if $|A \plus A| \le K|A|$, then \[ \energy(A) = \energy(A, A) \ge \frac{|A|^4}{|A \plus A|} \ge \frac{|A|^3}{K} .\] The converse is \emph{not} true. \begin{example} % Example 1.17 Let $G$ be your favourite (class of) abelian group(s). Then there exist constants $\theta, \eta > 0$ such that for all sufficiently large $n$, there exists $A \subseteq G$, with $|A| \ge n$ satisfying $\energy(A) \ge \eta|A|^3$ and $|A \plus A| \ge \theta |A|^2$. \end{example} \begin{fcthm}[Balog--Szemeredi--Gowers, Schoen] \label{bsg} % Theorem 1.18 Assuming: - $A \subseteq G$ is finite - $\energy(A) \ge \eta |A|^3$ for some $\eta > 0$ Then: there exists $A' \subseteq A$ of size at least $c_1(\eta) |A|$ such that $|A' \plus A'| \le \frac{|A'|}{c_2(\eta)}$, where $c_1(\eta)$ and $c_2(\eta)$ are polynomial in $\eta$. \end{fcthm} \textbf{Idea:} Find $A' \subseteq A$ such that $\forall a, b \in A'$ such that $a - b$ has many representations as $(a_1 - a_2) + (a_3 - a_4)$ with $a_i \in A$. We first prove a technical lemma, using a technique called ``dependent random choice''. \begin{fcdefn}[gamma-popular differences] \glssymboldefn{Pg}% Given $A \subseteq G$ and $\gamma > 0$, let \[ P_\gamma = \{x \in G : |A \cap (x + A)| \ge \gamma|A|\} \] be the set of \emph{$\gamma$-popular differences} of $A$. \end{fcdefn} \begin{fclemma}[] \label{lemma_1_19} % Lemma 1.19 Assuming: - $A \subseteq G$ is finite - $\energy(A) \ge \eta|A|^3$ - $c > 0$ Then: there is a subset $X \subseteq A$ of size $|X| \ge \eta |A| / 3$ such that for all but a $(16c)$-proportion of pairs $(a, b) \in X^2$, $a - b \in \Pg[c\eta]$. \end{fclemma} \begin{proof} Let $U = \{x \in G : |A \cap (x \plus A)| \le \half \eta|A|\}$. Then \begin{align*} \sum_{x \in U} |A \cap (x \plus A)|^2 &= \half \eta |A| \sum_x |A \cap (x \plus A)| \\ &= \half \eta|A|^3 \\ &= \half \energy(A) \end{align*} For $0 \le i \le \left\lceil \log_2 \eta^{-1} \right\rceil$, let \[ Q_i = \left\{ x \in G : \frac{|A|}{2^{i + 1}} < |A \cap (x \plus A)| \le \frac{|A|}{2^i} \right\} ,\] and set $\delta_i = \eta^{-1} 2^{-2i}$. Then \begin{align*} \sum_i \delta_i|Q_i| &= \sum_i \frac{|Q_i|}{\eta^{2^{2i}}} \\ &= \frac{1}{\eta|A|^2} \sum_{i} \frac{|A|^2}{2^{2i}} |Q_i| \\ &= \frac{1}{\eta|A|^2} \sum_{i} \frac{|A|^2}{2^{2i}} \sum_{x \notin U} \indicator{\left\{ \frac{|A|}{2^{i + 1}} < |A \cap (x \plus A)| \le \frac{|A|}{2^i}\right\}} \\ &\ge \frac{1}{\eta|A|^2} \sum_{x \notin U} |A \cap (x \plus A)|^2 \\ &\ge \frac{1}{\eta|A|^2} \cdot \half \energy(A) &&\left( \sum_{x \in U} |A \cap (x \plus A)|^2 \le \half \energy(A) \right) \\ &= \half|A| \tag{$*$} \label{bsg_lemma_eq} \end{align*} Let $S = \{(a, b) \in A^2 : a - b \notin \Pg[c\eta]\}$. Then \begin{align*} \sum_{i} \sum_{(a, b) \in S} |(A \minus a) \cap (A \minus b) \cap Q_i| &\le \sum_{(a, b) \in S} \ub{|(A \minus a) \cap (A \minus b)|}_{=\ub{|A \cap (a - b + A)| \le c\eta|A|}_{\text{by definition of $S$}}} \\ &\le |S| \cdot c\eta|A| \\ &\le c\eta |A|^3 \\ &\le 2c\eta|A|^2 \cdot \half |A| \\ &\stackrel{\eqref{bsg_lemma_eq}}{\le} 2c\eta|A|^2 \sum_{i} \delta_i |Q_i| \end{align*} Hence there exists $i_0$ such that \[ \sum_{(a, b) \in S} |(A \minus a) \cap (A \minus b) \cap Q_{i_0}| \le 2 c \eta|A|^2 \delta_{i_0} |Q_{i_0}| .\] Let $Q = Q_{i_0}$, $\delta = \delta_{i_0}$, $\lambda = 2^{-i_0}$. So \[ \sum_{(a, b) \in S} |(A \minus a) \cap (A \minus b) \cap Q| \le 2c\eta \delta|A|^2 |Q| \tag{$**$} \label{bsg_lemma_eq_2} .\] Find $x$ such that $X = |A \cap (A \plus x)|$ is large.