%! TEX root = AC.tex % vim: tw=50 % 17/10/2024 10AM \begin{proof} Choose $X \subseteq \mdiff 2A - {}A$ maximal such that the translates $x \plus A$ with $x \in X$ are disjoint. Such a set $X$ cannot be too large: $\forall x \in X$, $x \plus A \subseteq \mdiff 3A - {}A$, so by \nameref{plunn}, since $|\mdiff 3A - {}A| \le K^4 |A|$, \[ |X| |A| = \left| \bigcup_{x \in X} (x + A) \right| \le |\mdiff 3A - {}A| .\] So $|X| \le K^4$. We next show \[ \mdiff 2A - {}A \subseteq X \plus A \minus A \tag{$*$} \label{fr_wts_eq} .\] Indeed, if $y \in \mdiff 2A - {}A$ and $y \notin X$, then by maximality of $X$, $y \plus A \cap x \plus A \neq \emptyset$ for some $x \in X$ (and if $y \in X$, then clearly $y \in X \plus A \minus A$). It follows from \eqref{fr_wts_eq} by induction that $\forall l \ge 2$, \[ \mdiff lA - {}A \subseteq (l - 1)X + A - A \tag{$**$} \label{fr_la_a} ,\] since \[ \mdiff lA - {}A = A \plus \ub{(l - 1)A \minus A}_{\subseteq (l - 2)X \plus A \minus A} \subseteq (l - 2) X \plus \ub{2A - A}{\subseteq X \plus A \minus A} \subseteq (l - 1)X \plus A \minus A .\] Now let $H \le \Fp^n$ be the subgroup generated by $A$, which we can write as \[ H = \bigcup_{l \ge 1} (\mdiff lA - {}A) \stackrel{\eqref{fr_la_a}}{\subseteq} Y + A - A \] where $Y \le \Fp^n$ is the subgroup generated by $X$. But every element of $Y$ can be written as a sum of $|X|$ elements of $X$ with coefficients amongst $0, 1, \ldots, p - 1$, hence $|Y| \le p^{|X|} \le p^{K^4}$. To conclude, note that \[ |U| \le |Y| |A \minus A| \le p^{K^4} \le p^{K^4} K^2 |A| ,\] where we use \nameref{plunn} or even \nameref{ruzsa_ineq}. \end{proof} \begin{example} % Example 1.12 Let $A = V \cup R$ where $V \le \Fp^n$ is a subspace of dimension $K \ll d \ll n - K$ and $R$ consists of $K - 1$ linearly independent vectors not in $V$. Then \[ |A| = |V \cup R| = |V| + |R| = p^{n / k} + K - 1 \sim p^{n / k} = |V| \] and \[ |A + A| = |(V \cup R) + (V \cup R)| = |V \cup (V + R) \cup (R + R)| \sim K|V| .\] But any subspace $K \le \Fp^n$ containing $A$ must have size at least $p^{n / K + (K - 1)} \sim |V| \cdot p^K$, so the exponential dependence on $K$ is necessary. \end{example} \begin{fcthm}[Polynomial Freiman-Ruzsa, due to Gowers--Green--Manners--Tao 2024] % Theorem 1.12 Assuming: - $A \subseteq \Fp^n$ - $|A + A| \le K|A|$ Then: there exists a subspace $K \le \Fp^n$ of size at most $C_1(K) |A|$ such that for some $x \in \Fp^n$, \[ |A \cap (x + K)| \ge \frac{|A|}{C_2(K)} ,\] where $C_1(K)$ and $C_2(K)$ are polynomial in $K$. \end{fcthm} \begin{proof} Omitted, because the techniques are not relevant to other parts of the course. See Entropy Methods in Combinatorics next term. \end{proof} \begin{fcdefn}[] % Definition 1.13 \glssymboldefn{energy}% \glsnoundefn{adde}{additive energy}{additive energies}% \glsnoundefn{addq}{additive quadruple}{additive quadruples}% Given $A, B \subseteq G$ we define the \emph{additive energy} between $A$ and $B$ to be \[ E(A, B) = |\{(a, a', b, b') \in A \times A \times B \times B : a + b = a' + b'\}| .\] We refer to the quadruples $(a, a', b, b')$ such that $a + b = a' + b'$ as \emph{additive quadruples}. \end{fcdefn} \begin{example} % Example 1.14 Let $V \le \Fp^n$ be a subspace. Then $\energy(V) = \energy(V, V) = |V|^3$. On the other hand, if $A \subseteq \Zp$ is chosen at random from $\Zp$ (each element chosen independently with probability $\alpha > 0$), then with high probability \[ \energy(A) = \energy(A, A) = \alpha^4 p^3 = \alpha |A|^3 .\] \end{example} \begin{fclemma}[] \label{lemma_1_16} % Lemma 1.16 Assuming: - $A, B \subseteq G$ - both non-empty Then: \[ \energy(A, B) \ge \frac{|A|^2 |B|^2}{|A + B|} .\] \end{fclemma} \begin{proof} \glssymboldefn{r}% Define $r_{A + B}(x) = |\{(a, b) \in A \times B : a + b = x\}|$ (and notice that this is the same as $|A \cap (x \minus B)|$). Observe that \begin{align*} \energy(A, B) &= |\{(a, a', b, b') \in A^2 \times B^2 : a + b = a' + b'\} \\ &= \sum_{x \in G} r_{A \plus B}(x)^2 \\ &= \sum_{x \in A \plus B} r_{A \plus B}(x)^2 \\ &\ge \frac{\left( \sum_{x \in A \plus B} r_{A \plus B}(x) \right)^2}{|A \plus B|} &&\text{by Cauchy-Schwarz} \end{align*} but \begin{align*} \sum_{x \in G} |A \cup (x \minus B)| &= \sum_{x \in G} \sum_{y \in G} \indicator{A}(y) \indicator{x \minus B}(y) \\ &= \sum_{x \in G} \sum_{y \in G} \indicator{A}(y) \indicator{B}(x - y) \\ &= |A||B| \end{align*} (As usual, $\indicator{A}$ here means the indicator function). \end{proof}