%! TEX root = AC.tex % vim: tw=50 % 15/10/2024 10AM Note that this is symmetric, but is not necessarily non-negative, so we cannot prove that it is a metric. It does, however, satisfy triangle inequality: \begin{fclemma}[Ruzsa's triangle inequality] \label{ruzsa_ineq} % Lemma 1.8 Assuming: - $A, B, C \subseteq G$ finite Then: \[ \rd(A, C) \le \rd(A, B) + \rd(B, C) .\] \end{fclemma} \begin{proof} Observe that \[ |B| \cdot |A \minus C| \le |A \minus B| \cdot |B \minus C| .\] Indeed, writing each $d \in A \minus C$ as $d = a_d - c_d$ with $a_d \in A$, $c_d \in C$, the map \begin{align*} \phi : B \times (A \minus C) &\to (A \minus B) \times (B \minus C) \\ (b, d) &\mapsto (a_d - b, b - c_d) \end{align*} is injective. The triangle inequality now follows from the definition. \end{proof} \begin{fcdefn}[Doubling / difference constant] % Definition 1.9 \glsnoundefn{doubc}{doubling constant}{doubling constants}% \glsnoundefn{diffc}{difference constant}{difference constants}% \glssymboldefn{doubc}% Given a finite $A \subseteq G$, we write \[ \sigma(A) \defeq \frac{|A \plus A|}{|A|} \] for the \emph{doubling constant} of $A$ and \[ \delta(A) \defeq \frac{|A \minus A|}{|A|} \] for the \emph{difference constant} of $A$. \end{fcdefn} Then \cref{ruzsa_ineq} shows, for example, that \[ \log \diffc(A) = \rd(A, A) \le \rd(A, -A) + \rd(-A, A) = 2\log \doubc(A) .\] So $\diffc(A) \le \doubc(A)^2$, or $|A \minus A| \le \frac{|A \plus A|^2}{|A|}$. \begin{notation*} \glssymboldefn{mdiff}% Given $A \subseteq G$ and $l, m \in \Nbb_0$, we write \[ lA - mA \defeq \ub{A \plus A \plus \cdots \plus A}_{\text{$l$ times}} \minus \ub{A \minus A \minus \cdots \minus A}_{\text{$m$ times}} .\] \end{notation*} \begin{fcthm}[Plunnecke's Inequality] \label{plunn} % [Pl\'unnecke's Inequality] % Theorem 1.10 Assuming: - $A, B \subseteq G$ are finite sets - $|A \plus B| \le K|A|$ for some $K \ge 1$ Then: $\forall l, m \in \Nbb_0$, \[ |\mdiff lB - mB| \le K^{l + m}|A| .\] \end{fcthm} \begin{proof} Choose a non-empty subset $A' \subseteq A$ such that the ratio $\frac{|A' \plus B|}{|A'|}$ is minimised, and call this ratio $K'$. Then $|A' \plus B| = K'|A'|$, $K' \le K$, and $\forall A'' \subseteq A$, $|A'' \plus B| \ge K'|A''|$. \textbf{Claim:} For every finite $C \subseteq G$, $|A' \plus B \plus C| \le K'|A' \plus C|$. Let's complete the proof of the theorem assuming the claim. We first show that $\forall m \in \Nbb_0$, $|A' \plus mB| \le K'^m |A'|$. Indeed, the case $m = 0$ is trivial, and $m = 1$ is true by assumption. Suppose $m > 1$ and the inequality holds for $m - 1$. By the claim with $C = (m - 1)B$, we get \[ |A' \plus mB| = |A' \plus B \plus (m - 1) B| \le K' |A' + (m - 1)B| \le K'^m |A'| .\] But as in the proof of \nameref{ruzsa_ineq}, $\forall l, m \in \Nbb_0$, we can show \[ |A'| |\mdiff lB - mB| \le |A' \plus lB| |A' \plus mB| \le K'^l |A'| K'^m |A'| = K'^{l + m}|A'|^2 .\] Hence $|\mdiff lB - mB| \le K'^{l + m} |A'| \le K'^{l + m} |A|$, which completes the proof (assuming the claim). We now prove the claim by induction on $|C|$. When $|C| = 1$ the statement follows from the assumptions. Suppose the claim is true for $C$, and consider $C' = C \cup \{x\}$ for some $x \notin C$. Observe that \[ A' \plus B \plus C' = (A' \plus B \plus C) \plus ((A' \plus B \plus x) \setminus (D \plus B \plus x)) \] with $D = \{a \in A' : a \plus B \plus x \subseteq A' \plus B \plus X\}$. By definition of $K'$, $|D \plus B| \ge K'|D|$, so \begin{align*} |A' \plus B \plus C'| &\le |A' \plus B \plus C| + |A' \plus B \plus x| - |D \plus B \plus x| \\ &\stackrel{\text{IH}}{\le} K' |A' \plus C| + K'|A'| - K'|D| \\ &= K'(|A' \plus C| + |A'| - |D|) \end{align*} We apply this argument a second time, writing \[ A' \plus C' = (A' \plus C) \sqcup ((A' \plus x) \setminus (E \plus x)) \] where $E = \{a \in A' : a + x \in A' \plus C\} \subseteq D$. We conclude that \[ |A' \plus C'| = |A' \plus C| + |A' \plus x| - |E \plus x| \ge |A' \plus C| + |A'| - |D| \] so \[ |A' \plus B \plus C'| \le K'(|A' \plus C| + |A'| - |D|) \le K'|A' \plus C'| ,\] proving the claim. \end{proof} We are now in a position to generalise \cref{example_1_6}. \begin{fcthm}[Freiman-Ruzsa] \label{thm_1_11} % Theorem 1.11 Assuming: - $A \subseteq \Fp^n$ - $|A + A| \le K|A|$ (i.e. $\doubc(A) \le K$) Then: $A$ is contained in a subspace $H \le \Fp^n$ of size $|H| \le K^2 p^{K^4}|A|$. \end{fcthm}