%! TEX root = AC.tex % vim: tw=50 % 03/12/2024 10AM \begin{fcthm}[Szemeredi's Theorem for 4-APs] \label{thm_4_12} % [Szemer\'edi's Theorem for 4-APs] % Theorem 4.12 Assuming: - $A \subseteq \Fbb_5^n$ a set containing no non-trivial 4 term arithmetic progressions Then: $|A| = o(5^n)$. \end{fcthm} \textbf{Idea:} By \cref{prop_4_11} with $f = \balf = \indicator{A} - \alpha$, \[ \T_4( \ub{\indicator{A}}_{\balf + \alpha}, \ub{\indicator{A}}_{\balf + \alpha}, \ub{\indicator{A}}_{\balf + \alpha}, \ub{\indicator{A}}_{\balf + \alpha} ) - \alpha^4 = \T_4(\balf, \balf, \balf, \balf) + \cdots \] where $\cdots$ consists of $14$ other terms in which between one and three of the inputs are equal to $\balf$. These are controlled by \[ \|\balf\|_{U^2(\Fbb_5^n)} \le \unorm{\balf} ,\] whence \[ |\T_4(\indicator{A}, \indicator{A}, \indicator{A}, \indicator{A}) - \alpha^4| \le 15 \unorm{\balf} .\] So if $A$ contains no non-trivial 4 term arithmetic progressions and $5^n > 2\alpha^{-3}$, then $\unorm{\balf} \ge \frac{\alpha^4}{30}$. What can we say about functions with large $U^3$ norm? \begin{example} \label{eg_4_13} % Example 4.13 Let $M$ be an $n \times n$ symmetric matrix with entries in $\Fbb_5$. Then $f(x) = e(x^\top M x / 5)$ satisfies $\unorm{f} = 1$. \end{example} \begin{fcthm}[$U^3$ inverse theorem] \label{thm_4_14} % Theorem 4.14 Assuming: - $f : \Fbb_5^n \to \Cbb$ - $\|f\|_{L^\infty(\Fbb_5^n)} \le 1$ - $\unorm{f} \ge \delta$ for some $\delta > 0$ Then: there exists a symmetric $n \times n$ matrix $M$ with entries in $\Fbb_5$ and $b \in \Fbb_5^n$ such that \[ |\Ebb_x f(x) e((x^\top M x + b^\top x) / p)| \ge c(\delta) \] where $c(\delta)$ is a polynomial in $\delta$. In other words, $|\langle f, \phi\rangle| \ge c(\delta)$ for $\phi(x) = e((x^\top M x + b^\top x) / p)$ and we say ``$f$ correlates with a quadratic phase function''. \end{fcthm} \begin{proof}[Proof (sketch)] Let $\Delta_h f(x)$ denote $f(x) \ol{f(x + h)}$. $\unorm{f} = (\Ebb_h \|\Delta_h f\|_{U^2}^4)^{\frac{1}{8}}$. \begin{enumerate}[STEP 1:] \item Weak linearity. See reference. \item Strong linearity. We will spend the rest of the lecture discussing this in detail. \item Symmetry argument. Problem 8 on Sheet 3. \item Integration step. Problem 9 on Sheet 3. \end{enumerate} STEP 1: If $\unorm{f}^8 = \Ebb_h \|\Delta_h\|_{U^2}^4 \ge \delta^8$, then for at least a $\frac{\delta^8}{2}$-proportion of $h \in \Fbb_5^n$, $\frac{\delta^8}{2} \le \|\Delta_h f\|_{U^2}^4 \le \|\ft{\Delta_h f}\|_{l^\infty}^2$. So for each such $h \in \Fbb_5^n$, there exists $t_h$ such that $|\ft{\Delta_h f}(t_h)|^2 \ge \frac{\delta^8}{2}$. \begin{fcprop}[] \label{prop_4_15} % Proposition 4.15 Assuming: - $f : \Fbb_5^n \to \Cbb$ - $\|f\|_\infty \le 1$ - $\unorm{f} \ge \delta$ - $|\Fbb_5^n| = \Omega_\delta(1)$ Then: there exists $S \subseteq \Fbb_5^n$ with $|S| = \Omega_\delta(|\Fbb_5^n|)$ and a function $\phi : S \to \charG[\Fbb_5^n]$ such that \begin{enumerate}[(i)] \item $|\ft{\Delta_h f}(\phi(h))| = \Omega_\delta(1)$; \item There are at least $\Omega_\delta(|\Fbb_5^n|^3)$ quadruples $(s_1, s_2, s_3, s_4) \in S^4$ such that $s_1 + s_2 = s_3 + s_4$ and $\phi(s_1) + \phi(s_2) + \phi(s_4)$. \end{enumerate} \end{fcprop} STEP 2: If $S$ and $\phi$ are as above, then there is a linear function $\psi : \Fbb_5^n \to \charG[\Fbb_5^n]$ which coincides with $\phi$ for many elements of $S$. \begin{fcprop}[] \label{prop_4_16} % Proposition 4.16 Assuming: - $S$ and $\phi$ given as in \cref{prop_4_15} Then: there exists $n \times n$ matrix $M$ with entries in $\Fbb_5$ and $b \in \Fbb_5^n$ such that $\psi(x) = Mx + b$ ($\psi : \Fbb_5^n \to \charG[\Fbb_5^n]$) satisfies $\psi(x) = \phi(x)$ for $\Omega_\delta(|\Fbb_5^n|)$ elements $x \in S$. \end{fcprop} \begin{proof} Consider the graph of $\phi$, $\Gamma = \{(h, \phi(h)) : h \in S\} \subseteq \Fbb_5^n \times \charG[\Fbb_5^n]$. By \cref{prop_4_15}, $\Gamma$ has $\Omega_\delta(|\Fbb_5^n|^3)$ additive quadruples. By \nameref{bsg}, there exists $\Gamma' \subseteq \Gamma$ with $|\Gamma'| = \Omega_\delta(|\Gamma|) = \Omega_\delta(|\Fbb_5^n|)$ and $|\Gamma' + \Gamma'| = O_\delta(|\Gamma'|)$. udefine $S' \subseteq S$ by $\Gamma' = \{(h, \phi(h)) : h \in S'\}$ and note $|S'| = \Omega_\delta(|\Fbb_5^n|)$. By \nameref{thm_1_11} applied to $\Gamma' \subseteq \Fbb_5^n \times \charG[\Fbb_5^n]$, there exists a subspace $H \le \Fbb_5^n \times \charG[\Fbb_5^n]$ with $|H| = O_\delta(|\Gamma'|) = O_\delta(|\Fbb_5^n|)$ such that $\Gamma' \subseteq H$. Denote by $\pi : \Fbb_5^n \times \charG[\Fbb_5^n] \to \Fbb_5^n$ the projection onto the first $n$ coordinates. By construction, $\pi(H) \supseteq S'$. Moreover, since $|S'| = \Omega_\delta(|\Fbb_5^n|)$, \[ |\ker(\pi|_H)| = \frac{|H|}{|\Im(\pi|_H)|} = \frac{O_\delta(|\Fbb_5^n|)}{|S'|} = O_\delta(1) .\] We may thus partition $H$ into $O_\delta(1)$ cosets of some subspace $H^*$ such that $\pi|_H$ is injective on each coset. By averaging, there exists a coset $x + H^*$ such that \[ |\Gamma' \cap (x + H^*)| = \Omega_\delta(|\Gamma'|) = \Omega_\delta(|\Fbb_5^n|) .\] Set $\Gamma'' = \Gamma' \cap (x + H^*)$, and define $S''$ accordingly. Now $\pi|_{x + ^*}$ is injective and surjective onto $V \defeq \Im(\pi|_{x + H^*})$. This means there is an affine linear map $\psi : V \to \charG[\Fbb_5^n]$ such that $(h, \psi(h)) \in \Gamma''$ for all $h \in S''$. \end{proof} Then do steps 3 and 4. \end{proof} \begin{flashcard} What to do if you have lots of additive quadruples? \cloze{ Balog-Szemeredi-Gowers } \end{flashcard} \begin{flashcard} What to do if you have small doubling constant? \cloze{ Freiman-Ruzsa (or Polynomial-Freiman-Ruzsa) } \end{flashcard}