%! TEX root = AC.tex % vim: tw=50 % 28/11/2024 10AM Hence \[ \|\ft{f}\|_{l^\infty(\charG)} \le \|\ft{f}\|_{l^4(\charG)} = \|f\|_{U^2(G)} \le \|\ft{f}\|_{l^\infty(\charG)}^{\half} \|f\|_{L^2(G)}^{\half} .\] Moreover, if $f = \balf A = \indicator{A} - \alpha$, then \[ \T_3(f, f, f) = \T_3(\indicator{A} - \alpha, \indicator{A} - \alpha, \indicator{A} - \alpha) = \T_3(\indicator{A}, \indicator{A}, \indicator{A}) - \alpha^3 .\] We may therefore reformulate the first step in the proof of \nameref{thm_2_19} as follows: if $p^n \ge 2\alpha^{-2}$, then by \cref{lemma_4_6}, \[ \frac{\alpha^3}{2} \le \left| \frac{\alpha}{p^n} - \alpha^3 \right| = |\T_3(\balf A, \balf A, \balf A)| \le \|\balf A\|_{U^2(\Fbb_p^n)} .\] It remains to show that if $\|\balf A\|_{U^2(\Fbb_p^n)}$ is non-trivial, then there exists a subspace $V \le \Fbb_p^n$ of bounded codimension on which $A$ has increased density. \begin{fcthm}[$U^2$ Inverse Theorem] \label{thm_4_7} % Theorem 4.7 Assuming: - $f : \Fbb_p^n \to \Cbb$ - $\|f\|_{L^\infty(\Fbb_p^n)} \le 1$ - $\delta > 1$ - $\|f\|_{U^2(\Fbb_p^n)} \ge \delta$ Then: there exists $b \in \Fbb_p^n$ such that \[ |\EG x{\Fp^n} f(x) e(-x \cdot b / p)| \ge \delta^2 .\] In other words, $|\langle f, \phi \rangle| \ge \delta^2$ for $\phi(x) = e(-x \cdot b / p)$ and we say ``$f$ correlates with a linear phase function''. \end{fcthm} \begin{proof} We have seen that \[ \|f\|_{U^2(\Fp^n)}^2 \le \|\ft{f}\|_{l^\infty(\charG[\Fp^n])} \|f\|_{L^2(\Fp^n)} \le \|\ft{f}\|_{l^\infty(\charG[\Fp^n])} ,\] so \[ \delta^2 \le \|\ft{f}\|_{l^\infty(\charG[\Fp^n])} = \sup_{t \in \charG[\Fp^n]} |\Ebb_x f(x) e(-x \cdot t / p)| . \qedhere \] \end{proof} \begin{center} \includegraphics[width=0.4\linewidth]{images/d3176d4f18154aa1.png} \end{center} \begin{fcdefn}[$U^3$ norm] \label{defn_4_8} % Definition 4.8 \glssymboldefn{unorm}% Given $f : G \to \Cbb$, define its \emph{$U^3$ norm} by \begin{align*} \|f\|_{U^3(G)}^8 &\defeq \EG_{x, a, b, c} f(x) \ol{f(x + a) f(x + b) f(x + c)} \\ &\qquad f(x + a + b) f(x + b + c) f(x + a + c) \ol{f(x + a + b + c)} \\ &= \Ebb_{x, h_1, h_2, h_3 \in G} \prod_{\mathbf{\eps} \in \{0, 1\}^3} \mathcal{C}^{|\mathbf{\eps}|} f(x + \mathbf{\eps} \cdot \mathbf{h}) \end{align*} where $\mathcal{C} g(x) = \ol{g(x)}$ and $|\mathbf{\eps}|$ denotes the number of ones in $\mathbf{\eps}$. \end{fcdefn} \glssymboldefn{Diff}% It is easy to verify that $\EG cG \|\Delta_c f\|_{U^2(G)}^4$ where $\Delta_c g(x) = g(x) \ol{g(x + c)}$. \begin{fcdefn}[$U^3$ inner product] \label{defn_4_9} % Definition 4.9 \glssymboldefn{ip}% Given functions $f_{\mathbf{\eps}} : G \to \Cbb$ for $\mathbf{\eps} \in \{0, 1\}^3$, define their \emph{$U^3$ inner product} by \[ \langle (f_{\mathbf{\eps}})_{\mathbf{\eps} \in \{0, 1\}^3} \rangle_{U^3(G)} = \Ebb_{x, h_1, h_2, h_3 \in G} \prod_{\mathbf{\eps} \in \{0, 1\}^3} \mathcal{C}^{|\mathbf{\eps}|} f_{\mathbf{\eps}}(x + \mathbf{\eps} \cdot \mathbf{h}) .\] \end{fcdefn} Observe that $\ip{f, f, f, f, f, f, f, f} = \unorm{f}^8$. \begin{fclemma}[Gowers--Cauchy--Schwarz Inequality] \label{lemma_4_10} % Lemma 4.10 Assuming: - $f_{\mathbf{\eps}} : G \to \Cbb$, $\mathbf{\eps} \in \{0, 1\}^3$ Then: \[ |\ip{(f_{\mathbf{\eps}})_{\mathbf{\eps} \in \{0, 1\}^3}} \le \prod_{\mathbf{\eps} \in \{0, 1\}^3} \unorm{f_{\mathbf{\eps}}} .\] \end{fclemma} Setting $f_{\mathbf{\eps}} = f$ for $\mathbf{\eps} \in \{0, 1\}^2 \times \{0\}$ and $f_{\mathbf{\eps}} = 1$ otherwise, it follows that $\|f\|_{U^2(G)}^4 \le \unorm{f}^4$ hence $\|f\|_{U^2(G)} \le \unorm{f}$. \begin{fcprop}[] \label{prop_4_11} % Proposition 4.11 Assuming: - $f_1, f_2, f_3, f_4 : \Fbb_5^n \to \Cbb$ Then: \[ \T_4(f_1, f_2, f_3, f_4) \le \min_{i \in [4]} \unorm{f_i} \prod_{j \neq i} \|f_j\|_{L^\infty(\Fbb_5^n)} .\] \end{fcprop} \begin{proof} We additionally assume $f = f_1 = f_2 = f_3 = f_4$ to make the proof easier to follow, but the same ideas are used for the general case. We additionally assume $\|f\|_{L^\infty(\Fbb_5^n)} \le 1$, by rescaling, since the inequality is homogeneous. Reparametrising, we have \begin{align*} \T_4(f, f, f, f) &= \Ebb_{a, b, c, d \in \Fbb_5^n} f(3a + 2b + c) f(2a + b - d) f(a - c - 2d) f(-b - 2c - 3d) \\ |\T_4(f, f, f, f)|^8 &\le \Big(\Ebb_{a, b, c} |\Ebb_d f(2a + b - d) f(a - c - 2d) f(-b - 2c - 3d)|^2\Big)^4 \\ &= \Big(\Ebb_{d, d'} \Ebb_{a, b} f(2a + b + d) \ol{f(2a + b - d')} \\ &\qquad \Ebb_c f(a - c - 2d) \ol{f(a - c - 2d')} f(-b - 2c - 3d) \ol{f(-b - 2c - 3d')}\Big)^4 \\ &\le \Big(\Ebb_{d, d'} \Ebb_{a, b} |\Ebb_c f(a - c - 2d) \ol{f(a - c - 2d')} f(-b - 2c - 3d) \ol{f(-b - 2c - 3d')}|^2\Big)^2 \\ &= \Big( \Ebb_{c, c', d, d'} \Ebb_a f(a - c - 2d) \ol{f(a - c' - 2d)} \ol{f(a - c - 2d')} f(a - c' - 2d') \\ &\qquad \Ebb_b f(-b - 2c - 3d) \ol{f(-b - 2c' - 3d)} \ol{f(-b - 2c - 3d')} f(-b - 2c' - 3d') \Big)^2 \\ &\le \Ebb_{c, c', d, d', a} |\Ebb_b f(-b - 2c - 3d) \ol{f(-b - 2c' - 3d)} \ol{f(-b - 2c - 3d')} f(-b - 2c' - 3d')|^2 \\ &= \Ebb_{b, b', c, c', d, d'} f(-b - 2c - 3d) \ol{f(-b' - 2c - 3d)} \ol{f(-b - 2c' - 3d)} f(-b' - 2c' - 3d) \\ &\qquad \ol{f(-b - 2c - 3d')} f(-b' - 2c - 3d') f(-b -2c' - 3d') \ol{f(-b' -2c' - 3d')} \qedhere \end{align*} \end{proof}