%! TEX root = AC.tex % vim: tw=50 % 26/11/2024 10AM \begin{proof} Every $P \in \V_n^d$ can be written as a linear combination of monomials in $\M_n^d$, so \[ P(x + y) = \sum_{\substack{m, m' \in \M_n^d \\ \deg(mm') \le d}} c_{m, m'} m(x) m'(y) \] for some coefficients $c_{m, m'}$. Clearly at least one of $m, m'$ must have degree $\le \frac{d}{2}$, whence \[ P(x + y) = \sum_{m \in \M_n^{d / 2}} m(x) F_m(y) + \sum_{m' \in \M_n^{d / 2}} m'(y) G_{m'}(x) ,\] for some families of polynomials $(F_m)_{m \in \M_n^{d / 2}}$, $(G_{m'})_{m' \in \M_n^{d / 2}}$. Viewing $(P(x + y))_{x, y \in A}$ as a $|A| \times |A|$-matrix $C$, we see that $C$ can be written as the sum of at most $2\m_{d / 2}$ matrices, each of which has rank $1$. Thus $\rank(C) \le 2\m_{d / 2}$. But by assumption, $C$ is a diagonal matrix whose rank equals $|\{a \in A : P(a + a) \neq 0\}|$. \end{proof} \begin{fcprop}[] \label{prop_4_3} % Proposition 4.3 Assuming: - $A \subseteq \Fbb_3^n$ a set containing no non-trivial 3 term arithmetic progressions Then: $|A| \le 3\m_{2n / 3}$. \end{fcprop} \begin{proof} Let $d \in [0, 2n]$ be an integer to be determined later. Let $W$ be the space of polynomials in $\V_n^d$ that vanish on $(2 \stimes A)^c$. We have \[ \dim(W) \ge \dim(\V_n^d) - |(2 \stimes A)^c| = \m_d - (3^n - |A|) .\] We claim that there exists $P \in W$ such that $|\supp(P)| \ge \dim(W)$. Indeed, pick $P \in W$ with maximal support. If $|\supp(P)| < \dim(W)$, then there would be a non-zero polynomial $Q \in W$ vanishing on $\supp(P)$, in which case $\supp(P + Q) \supsetneq \supp(P)$, contradicting the choice of $P$. \begin{center} \includegraphics[width=0.3\linewidth]{images/42446e88f25f4edb.png} \end{center} Now by assumption, \[ \{a + a' : a \neq a' \in A\} \cap 2 \stimes A = \emptyset .\] So any polynomial that vanishes on $(2 \stimes A)^c$ vanishes on $\{a + a' : a \neq a' \in A\}$. By \cref{lemma_4_2} we now have that, \begin{align*} |A| - (3^n - \m_d) &= \m_d - (3^n - |A|) \\ &\le \dim(W) \\ &\le |\supp(P)| \\ &= |\{x \in \Fbb_3^n : P(x) \neq 0\}| \\ &= |\{a \in A : P(2a) \neq 0\}| \\ &\le 2\m_{d / 2} \end{align*} Hence $|A| \ge 3^n - \m_d + 2\m_{d / 2}$. But the monomials in $\M_n \setminus \M_n^d$ are in bijection with the ones in $\M_{2n - d}$ via $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mapsto x_1^{2 - \alpha_1} \cdots x_n^{2 - \alpha_n}$, whence $3^n - \m_d = \m_{2n - d}$. Thus setting $d = \frac{4n}{3}$, we have $|A| \le \m_{2n / 3} + 2\m_{2n / 3} = 3\m_{2n / 3}$. \end{proof} You will prove \cref{thm_4_1} on Example Sheet 3. We do not have at present a comparable bound for 4 term arithmetic progressions. Fourier techniques also fail. \begin{example} \label{eg_4_4} % Example 4.4 Recall from \cref{lemma_2_18} that given $A \subseteq G$, \[ |\T_3(\indicator{A}, \indicator{A}, \indicator{A}) - \alpha^3| \ge \sup_{\gamma \neq 1} |\ft{\indicator{A}}(\gamma)| .\] But it is impossible to bound \[ \T_4(\indicator{A}, \indicator{A}, \indicator{A}, \indicator{A}) - \alpha^4 = \EG xd \indicator{A}(x) \indicator{A}(x + d) \indicator{A}(x + 2d) \indicator{A}(x + 3d) - \alpha^4 \] by $\sup_{\gamma \neq 1} |\ft{\indicator{A}}(\gamma)|$. Indeed, consider $Q = \{x \in \Fbb_p^n : x \cdot x = 0\}$. By Problem 11(ii) on Sheet 1, \[ \frac{|Q|}{p^n} = \frac{1}{p} + O(p^{-n / 2}) \] and \[ \sup_{t \neq 0} |\ft{\indicator{Q}}(t)| = O(p^{-n / 2}) .\] But given a 3 term arithmetic progression $x, x + d, x + 2d \in Q$, by the identity \[ x^2 - 3(x + d)^2 + 3(x + 2d)^2 - (x + 3d)^2 = 0 \qquad \forall x, d ,\] $x + 3d$ automatically lies in $Q$, so \[ \T_4(\indicator{A}, \indicator{A}, \indicator{A}, \indicator{A}) = \T_3(\indicator{A}, \indicator{A}, \indicator{A}) = \left( \frac{1}{p} \right)^3 + O (p^{-n / 2}) \] which is not close to $\left( \frac{1}{p} \right)^4$. \end{example} \begin{fcdefn}[$U^2$-norm] \label{defn_4_5} % Definition 4.5 Given $f : G \to \Cbb$, define its \emph{$U^2$-norm} by the formula \[ \|f\|_{U^2(G)}^4 = \Ebb_{x, a, b \in G} f(x) \ol{f(x + a) f(x + b)} f(x + a + b) .\] \end{fcdefn} Problem 1(i) on Sheet 2 showed that $\|f\|_{U^2(G)} = \|\ft{f}\|_{l^4(\charG)}$, so this is indeed a norm. Problem 1(ii) asserted the following: \begin{fclemma}[] \label{lemma_4_6} % Lemma 4.6 Assuming: - $f_1, f_2, f_3 : G \to \Cbb$ Then: \[ |\T_3(f_1, f_2, f_3)| \le \min_{i \in [3]} \|f_i\|_{U^2(G)} \cdot \prod_{j \neq i} \|f_j\|_{L^\infty(G)} .\] \end{fclemma} Note that \[ \sup_{\gamma \in \charG} |\ft{f}(\gamma)|^4 \le \sum_{\gamma \in \charG} |\ft{f}(\gamma)|^4 \le \sup_{\gamma \in \charG} |\ft{f}(\gamma)|^2 \sum_{\gamma \in \charG} |\ft{f}(\gamma)|^2 \] and thus by \gls{parse}, \[ \|f\|_{U^2(G)}^4 = \|\ft{f}\|_{l^\infty(\charG)}^4 \le \|\ft{f}\|_{l^\infty(\charG)}^2 \|f\|_{L^2(G)}^2 .\]