%! TEX root = AC.tex % vim: tw=50 % 21/11/2024 10AM So we have \[ \Ebb_{(z_1, \ldots, z_m) \in A^m} \EG yG \left| \sum_{i = 1}^{m} Z_i(y) \right|^p = O \left( p^{p / 2} m^{p / 2 - 1} \sum_{i = 1}^{m} (2 \|f\|_{L^p(G)})^p \right) = O((4p)^{p / 2} m^{p / 2} \|f\|_{L^p(G)}^p) .\] Choose $m = O(\eps^{-2} p)$ so that the RHS is at most $(\frac{\eps}{4} \|f\|_{L^p(G)})^p$. whence \[ \Ebb_{(z_1, \ldots, z_m) \in A^m} \ub{\EG yG \left| \frac{1}{m} \sum_{i = 1}^{m} \tau_{-zi} f(y) - f \conv \cmeas(y)\right|^p}_{= (*)} = O((4p)^{p / 2} m^{p / 2} \|f\|_{L^p(G)}^p) = \left( \frac{\eps}{4} \|f\|_{L^p(G)} \right)^p .\] Write \[ L = \left\{z = (z_1, \ldots, z_m) \in A^m : (*) \le \left( \frac{\eps}{2} \|f\|_{L^p(G)} \right)^p\right\} .\] By Markov inequality, since \[ \Ebb (*) \le \left( \frac{\eps}{4} \|f\|_{L^p(G)} \right)^p = 2^{-p} \left( \frac{\eps}{2}\|f\|_{L^p(G)} \right)^p ,\] we have \[ \frac{|A^m \setminus L|}{|A^m|} = \Pbb\left((*) \ge \left( \frac{\eps}{2}\|f\|_{L^p(G)} \right)^p \right) \le \Pbb((*) \ge 2^p \Ebb(*)) \le 2^{-p} \] so $|L| \ge \left( 1 - \frac{1}{2^p} \right) |A|^m \ge \half |A|^m$. Let \[ D = \{\ub{(b, b, \ldots, b)}_{m} : b \in B\} .\] Now $L \plus D \subseteq (A \plus B)^m$, whence \[ |L \plus D| \le |A \plus B|^m \le K^m |A|^m \le 2K^m |L| .\] By \cref{lemma_1_16}, \[ \energy(L, D) \ge \frac{|L|^2 |D|^2}{|L \plus D|} \ge \half K^{-m} |D|^2 |L| \] so there are at least $\frac{|D|^2}{2K^m}$ pairs $(d_1, d_2) \in D \times D$ such that $\rcount_{L \minus L}(d_2 - d_1) > 0$. In particular, there exists $b \in ub$ and $X \subseteq B - b$ of size $|X| \ge \frac{|D|}{2K^m} = \frac{|B|}{2K^m}$ such that for all $x \in X$, there exists $l_2(x) \in L$ such that for all $i \in [m]$, $l_1(x)_i - l_2(x)_i = x$. But then for each $x \in X$, by the triangle inequality, \begin{align*} \|\tau_{-x} f \conv \cmeas - f \conv \cmeas\|_{L^p(G)} &\le \left\| \tau_{-x} f \conv \cmeas - \tau_{-x} \left( \frac{1}{m} \sum_{i = 1}^{m} \tau_{-l_2(x)_i} f \right) \right\|_{L^p(G)} \\ &~~+ \left\| \tau_{-x} \left( \frac{1}{m} \sum_{i = 1}^m \tau_{-l_2(x_i)} f \right) - f \conv \cmeas \right\|_{L^p(G)} \\ &= \left\| f \conv \cmeas - \frac{1}{m} \sum_{i = 1}^{m} \tau_{-l_2(x)_i} f \right\|_{L^p(G)} \\ &~~+ \left\| \frac{1}{m} \sum_{i = 1}^{m} \tau_{-x - l_2(x)_i} f - f \conv \cmeas \right\|_{L^p(G)} \\ &\le 2 \cdot \frac{\eps}{2} \|f\|_{L^p(G)} \end{align*} by definion of $L$. \end{proof} \begin{fcthm}[Bogolyubov again, after Sanders] \label{thm_3_10} % Theorem 3.10 Assuming: - $A \subseteq \Fbb_p^n$ of density $\alpha > 0$ Then: there exists a subspace $V \le \Fbb_p^n$ of codimension $O(\log^4 \alpha^{-1})$ such tht $V \subseteq A \plus A \minus A \minus A$. \end{fcthm} Almost periodicity is also a key ingredient in recent work of Kelley and Meka, showing that any $A \subseteq [N]$ containing no non-trivial 3 term arithmetic progressions has size $|A| \le \exp(-C \log^{\frac{1}{11}} N)N$. \newpage \section{Further Topics} In $\Fbb_p^n$, we can do much better. \begin{fcthm}[Ellenberg-Gijswijt, following Croot-Lev-Pach] \label{thm_4_1} % Theorem 4.1 Assuming: - $A \subseteq \Fbb_3^n$ contains no non-trivial 3 term arithmetic progressions Then: $|A| = o(2.756)^n$. \end{fcthm} \begin{notation*} \glssymboldefn{M}% Let $M_n$ be the set of monomials in $x_1, \ldots, x_2$ whose degree in each variable is at most $2$. Let $V_n$ be the vector space over $\Fbb_3$ whose basis is $M_n$. For any $d \in [0, 2n]$, write $M_n^d$ for the set of monomials in $M_n$ of (total) degree at most $d$, and $V_n^d$ for the corresponding vector space. Set $m_d = \dim(V_n^d) = |M_n^d|$. \end{notation*} \begin{fclemma}[] \label{lemma_4_2} % Lemma 4.2 Assuming: - $A \subseteq \Fbb_3^n$ - $P \in \V_n^d$ is a polynomial - $P(a + a') = 0$ for all $a \neq a' \in A$ Then: \[ |\{a \in A : P(2a) \neq 0\}| \le 2 \m_{d / 2} .\] \end{fclemma}