%! TEX root = AC.tex % vim: tw=50 % 19/11/2024 10AM \begin{fcthm}[Chang's Theorem] \label{thm_3_7} % Theorem 3.7 Assuming: - $G$ a finite abelian group - $A \subseteq G$ be of density $\alpha > 0$ - $\Lambda \supseteq \Spec_\rho(\indicator{A})$ is \gls{diss} Then: $|\Lambda| = O(\rho^{-2} \log \alpha^{-1}$. \end{fcthm} We may bootstrap \nameref{thm_3_1} to obtain the following: \begin{fcthm}[Marcinkiewicz-Zygmund] \label{thm_3_8} % Theorem 3.8 Assuming: - $p \in [2, \infty)$ - $X_1, X_2, \ldots, X_n \in \L^p(\Pbb)$ independent random variables - $\Ebb \sum_{i = 1}^{n} X_i = 0$ Then: \[ \left\| \sum_{i = 1}^{n} X_i \right\|_{L^p(\Pbb)} = O \left( p^{\half} \left\| \sum_{i = 1}^{n} |X_i|^2 \right\|_{L^{p / 2}(\Pbb)}^{\half} \right) .\] \end{fcthm} \begin{proof} First assume the distribution of the $X_i$'s is symmetric, i.e. $\Pbb(X_i = a) = \Pbb(X_i = -a)$ for all $a \in \Rbb$. Partition the probability space $\Omega$ into sets $\Omega_1, \Omega_2, \ldots, \Omega_M$, write $\Pbb_j$ for the induced measure on $\Omega_j$ such that all $X_i$'s are symmetric and take at most 2 values. By \nameref{thm_3_1}, for each $j \in [M]$, \begin{align*} \left\| \sum_{i = 1}^{n} X_i \right\|_{L^p(\Pbb_j)}^p &= O \left( p^{p / 2} \left( \sum_{i = 1}^{n} \|X_i\|_{L^2(\Pbb_j)}^2 \right)^{p / 2} \right) \\ &= O \left( p^{p / 2} \left\| \sum_{i = 1}^{n} |X_i|^2 \right\|_{L^{p / 2}(\Pbb_j)}^{p / 2} \right) \end{align*} so summing over all $j$ and taking $p$-th roots gives the symmetric case. Now suppose the $X_i$'s are arbitrary, and let $Y_1, \ldots, Y_n$ be such that $Y_i \sim X_i$ and $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n$ are all independent. Applying the symmetric case to $X_i - Y_i$, \begin{align*} \left\| \sum_{i = 1}^{n} (X_i - Y_i) \right\|_{L^p(\Pbb \times \Pbb)} &= O \left( p^{\half} \left\| \sum_{i = 1}^{n} |X_i - Y_i|^2 \right\|_{L^{p / 2}(\Pbb \times \Pbb)}^{\half} \right) \\ &= O \left( p^{\half} \left\| \sum_{i = 1}^{n} |X_i - Y_i|^2 \right\|_{L^{p / 2}(\Pbb)}^{\half} \right) \end{align*} But then \begin{align*} \left\| \sum_{i = 1}^{n} X_i \right\|_{L^p(\Pbb)} = \left\| \sum_{i = 1}^{n} X_i - \ub{\Ebb^Y \sum_{i = 1}^{n} Y_i}_{=0} \right\|_{L^p(\Pbb)}^p \\ &= \Ebb^X \left| \sum X_i - \Ebb^Y \sum Y_i \right|^p \\ &= \Ebb^X \left| \Ebb^Y \sum (X_i - Y_i) \right|^p \\ &\le \Ebb^X \Ebb^Y \left| \sum (X_i - Y_i) \right|^p &&\text{by Jensen say} \\ &= \left\| \sum (X_i - Y_i) \right\|_{L^p(\Pbb \times \Pbb)}^p \end{align*} concluding the proof. \end{proof} \begin{fcthm}[Croot-Sisask almost periodicity] \label{thm_3_9} % Theorem 3.9 Assuming: - $G$ a finite abelian group - $\eps > 0$ - $p \in [2, \infty)$ - $A, B \subseteq G$ are such that $|A + B| \le K|A|$ - $f : G \to \Cbb$ Then: there exists $b \in B$ and a set $X \subseteq B - b$ such that $|X| \ge 2^{-1} K^{-O(\eps^{-2} p)}|B|$ and \[ \|\tau_x f \conv \cmeas - f \conv \cmeas \|_{L^p(G)} \le \eps \|f\|_{L^p(G)} \qquad \forall x \in X ,\] where $\tau_x g(y) = g(y + x)$ for all $y \in G$, and as a reminder, $\cmeas$ is the \gls{charm} of $A$. \end{fcthm} \begin{proof} The main idea is to approximate \[ f \conv \cmeas(y) = \Ebb_x f(y - x) \cmeas(x) = \EG xA f(y - x) \] by $\frac{1}{m} \sum_{i = 1}^{m} f(y - z_i)$, where $z_i$ are sampled independently and uniformly from $A$, and $m$ is to be chosen later. For each $y \in G$, define $Z_i(y) = \tau_{-zi} f(y) - f \conv \cmeas(y)$. For each $y \in G$, these are independent random variables with mean $0$, so by \nameref{thm_3_8}, \begin{align*} \left\| \sum_{i = 1}^{m} Z_i(y) \right\|_{L^p(\Pbb)}^p &= O \left( p^{p / 2} \left\| \sum_{i = 1}^{m} |Z_i(y)|^2 \right\|_{L^{p / 2}(\Pbb)}^{p / 2} \right) \\ &= O \left( p^{p / 2} \Ebb_{(z_1, \ldots, z_m) \in A^m} \left| \sum_{i = 1}^{m} |Z_i(y)|^2 \right|^{p / 2} \right) \end{align*} By H\"older with $\frac{1}{p'} + \frac{2}{p} = 1$, we get \begin{align*} \left| \sum_{i = 1}^{m} |Z_i(y)|^2 \right|^{p / 2} &\le \left( \sum_{i = 1}^{m} 1^{p'} \right)^{\frac{1}{p'} \cdot \frac{p}{2}} \left( \sum_{i = 1}^{m} |Z_i(y)|^{2 \cdot p / 2} \right)^{\frac{2}{p} \cdot \frac{p}{2}} \\ &\le \left( \sum_{i = 1}^{m} 1^{p'} \right)^{\frac{p}{2} - 1} \left( \sum_{i = 1}^{m} |Z_i(y)|^{2 \cdot p / 2} \right)^{\frac{2}{p} \cdot \frac{p}{2}} \\ &= m^{p / 2 - 1} \sum_{i = 1}^{m} |Z_i(y)|^p \end{align*} so \[ \left\| \sum_{i = 1}^{m} Z_i(y) \right\|_{L^p(\Pbb)}^p = O \left( p^{p / 2} m^{p / 2 - 1} \Ebb_{(z_1, \ldots, z_m) \in A^m} \sum_{i = 1}^{m} |Z_i(y)|^p \right) .\] Summing over all $y \in G$, we have \[ \EG yG \left\| \sum_{i = 1}^{m} Z_i(y) \right\|_{L^p(\Pbb)}^p = O \left( p^{p / 2} m^{p / 2 - 1} \Ebb_{(z_1, \ldots, z_m) \in A^m} \sum_{i = 1}^{m} \EG yG |Z_i(y)|^p \right) \] with \begin{align*} \left( \EG yG |Z_i(y)|^p \right)^{\frac{1}{p}} &= \|Z_i\|_{L^p(G)} \\ &= \|\tau_{-z_i} f - f\conv \cmeas \|_{L^p(G)} \\ &\le ,\|\tau_{-z_i} f\|_{L^p(G)} + \|f \conv \cmeas\|_{L^p(G)} \\ &\le \|f\|_{L^p(G)} + \|f\|_{L^q(G)} \|\cmeas\|_{L^1(G)} \\ &\le 2 \|f\|_{L^p(G)} \end{align*} by Young / H\"older ($\|f \conv g\|_{L^r(G)} \le \|f\|_{L^p(G)} \|g\|_{L^q(G)}$ where $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$).