%! TEX root = AC.tex % vim: tw=50 % 12/11/2024 10AM \begin{proof} Let $\eps = \frac{\alpha^2}{40\pi}$, and use \cref{lemma_2_23} to partition $[p]$ into progressions $P_i$ of length \[ \ge \eps \sqrt{\frac{p}{2}} \ge \frac{\alpha^2}{40\pi} \frac{\sqrt{\frac{N}{3}}}{2} \ge \frac{\alpha^2 \sqrt{N}}{500} \] and $\diam(\varphi(P_i)) \le \eps p$. Fix one $x_i$ from each of the $P_i$. Then \begin{align*} \frac{\alpha^2}{20} &\le |\ft{f_{A'}}(t)| \\ &= \left| \frac{1}{p} \sum_i \sum_{x \in P_i} f_{A'}(x) e(-xt / p) \right| \\ &= \frac{1}{p} \left| \sum_i \sum_{x \in P_i} f_{A'}(x) e(-xit / p) + \sum_i \sum_{x \in P_i} f_{A'}(x) (e(-xt / p) - e(-xit / p)) \right| \\ &\le \frac{1}{p} \sum_i \left| \sum_{x \in P_i} f_{A'}(x) \right| + \frac{1}{p} \sum_i \sum_{x \in P_i} |f_{A'}(x)| |\ub{e(-xt / p) - e(-xit / p)}_{\substack{\le 2\pi \eps \\ \text{since $|t(x - x_i)| \le \eps p$}}}| \end{align*} So \[ \sum_i \left| \sum_{x \in P_i} f_{A'}(x) \right| \ge \frac{\alpha^2}{40} p .\] Since $f_{A'}$ has mean zero, \[ \sum_i \left( \left| \sum_{x \in P_i} f_{A'}(x) \right| + \sum_{x \in P_i} f_{A'}(x) \right) \ge \frac{\alpha^2}{40} p ,\] hence there exists $i$ such that \[ \left| \sum_{x \in P_i} f_{A'}(x) \right| + \sum_{x \in P_i} f_{A'}(x) \ge \frac{\alpha^2}{80} |P_i| \] and so \[ \sum_{x \in P_i} f_{A'}(x) \ge \frac{\alpha^2}{160} |P_i| . \qedhere \] \end{proof} \begin{fcdefn}[Bohr set] \glsnoundefn{bset}{Bohr set}{Bohr sets}% \glssymboldefn{bohr}% % Definition 2.25 Let $\Gamma \subseteq \charG$ and $\rho > 0$. By the \emph{Bohr set} $B(\Gamma, \rho)$ we mean the set \[ B(\Gamma, \rho) = \{x \in G : |\gamma(x) - 1| < \rho ~\forall \gamma \in \Gamma\} .\] We call $|\Gamma|$ the \emph{rank} of $B(\Gamma, \rho)$, and $\rho$ its \emph{width} or \emph{radius}. \end{fcdefn} \begin{example} % Example 2.26 When $G = \Fp^n$, then $B(\Gamma, \rho) = \langle \Gamma \rangle^\perp$ for all sufficiently small $\rho$. \end{example} \begin{fclemma}[] % Lemma 2.27 Assuming: - $\Gamma \subseteq \charG$ of size $d$ - $\rho > 0$ Then: \[ |\bohr(\Gamma, \rho)| \ge \left( \frac{\rho}{8} \right)^d |G| .\] \end{fclemma} \begin{fcprop}[Bogolyubov in a general finite abelian group] % Proposition 2.28 Assuming: - $A \subseteq G$ of density $\alpha > 0$ Then: there exists $\Gamma \subseteq \charG$ of size at most $2\alpha^{-2}$ such that $A + A - A - A \supseteq \bohr(\Gamma, \rho)$. \end{fcprop} \begin{proof} Recall $\indicator{A} \conv \indicator{A} \conv \indicator{-A} \conv \indicator{-A}(x) = \sum_{\gamma \in \charG} |\ft{\indicator{A}}(\gamma)|^4 \gamma(x)$. Let $\Gamma \in \Spec_{\sqrt{\frac{\alpha}{2}}}(\indicator{A})$, and note that, for $x \in \bohr \left( \Gamma, \half \right)$ and $\gamma \in \Gamma$, $\Re(\gamma(x)) > 0$. Hence, for $x \in \bohr \left( \Gamma, \half \right)$, \[ \Re \sum_{\gamma \in \charG} |\ft{\indicator{A}}(\gamma)|^4 \gamma(x) = \ub{\Re \sum_{\gamma \in \Gamma} |\ft{\indicator{A}}(\gamma)|^4 \gamma(x)}_{\ge \alpha^4} + \Re \sum_{\gamma \notin \Gamma} |\ft{\indicator{A}}(\gamma)|^4 \gamma(x) \] and \[ \left| \Re \sum_{\gamma \notin \Gamma} |\ft{\indicator{A}}(\gamma)|^4 \gamma(x) \right| \le \sup_{\gamma \notin \Gamma} |\ft{\indicator{A}}(\gamma)|^2 \sum_{\gamma \notin \Gamma} |\ft{\indicator{A}}(\gamma)|^2 \le \left( \sqrt{\frac{\alpha}{2}} \cdot \alpha \right)^2 \cdot \alpha = \frac{\alpha^4}{2} . \qedhere \] \end{proof} \newpage \section{Probabilistic Tools} All probability spaces in this course will be finite. \begin{fcthm}[Khintchine's inequality] \label{thm_3_1} % Theorem 3.1 Assuming: - $p \in [2, \infty)$ - $X_1, X_2, \ldots, X_n$ independent random variables - $\Pbb(X_i = x_i) = \half = \Pbb(X_i = -x_i)$ Then: \[ \left\| \sum_{i = 1}^{n} X_i \right\|_{L^p(\Pbb)} = O \left( p^{\half} \left( \sum_{i = 1}^{n} \|X_i\|_{L^2(\Pbb)}^2 \right)^{\half} \right) .\] \end{fcthm} \begin{proof} By nesting of norms, it suffices to prove the case $p = 2k$ for some $k \in \Nbb$. Write $X = \sum_{i = 1}^{n} X_i$, and assume $\sum_{i = 1}^{n} \|X_i\|_{L^\infty(\Pbb)}^2 = 1$. Note that in fact $\sum_{i = 1}^{n} \|X_i\|_{L^2(\Pbb)}^2 = \sum_{i = 1}^{n} \|X_i\|_{L^\infty(\Pbb)}^2$, hence $\sum_{i = 1}^{n} \|X_i\|_{L^2(\Pbb)}^2 = 1$.