%! TEX root = AC.tex % vim: tw=50 % 10/10/2024 10AM % 1. Combinatorial methods % 2. Fourier-analytic techniques % 3. Probabilistic tools % 4. Further topics \newpage \section{Combinatorial methods} \begin{fcdefn}[Sumset] \glsnoundefn{sumset}{sumset}{sumsets}% \glssymboldefn{sumset}% \glssymboldefn{diffset}% Let $G$ be an abelian group. Given $A, B \subseteq G$, define the \emph{sumset} $A + B$ to be \[ A + B \defeq \{a + b : a \in A, b \in B\} \] and the \emph{difference set} $A - B$ to be \[ A - B \defeq \{a + b : a \in A, b \in B\} .\] \end{fcdefn} If $A$ and $B$ are finite, then certainly \[ \max\{|A|, |B|\} \le |A \plus B| \le |A||B| .\] \begin{example} % Example 1.1 Let $A = [n] \defeq \{1, 2, \ldots, n\} \subseteq \Zbb$. Then \[ |A \plus A| = |\{2, \ldots, 2n\}| = 2n - 1 = 2|A| - 1 .\] \end{example} \begin{fclemma}[] % Lemma 1.2 Assuming: - $A \subseteq \Zbb$ is finite. Then: $|A \plus A| \ge 2|A| - 1$, with equality if and only if $A$ is an arithmetic progression. \end{fclemma} \begin{proof} Let $A = \{a_1, a_2, \ldots, a_n\}$ with $a_1 < a_2 < \cdots < a_n$. Then \[ a_1 + a_1 < a_1 + a_2 < a_1 + a_2 < \cdots < a_1 + a_n < a_2 + a_n < \cdots < a_n + a_n ,\] so $|A \plus A| \ge 2|A| - 1$. But we could also have written \[ a_1 + a_1 < a_1 + a_2 < a_2 + a_2 < a_2 + a_3 < a_2 + a_4 < \cdots < a_2 + a_n < a_3 + a_n < \cdots < a_n + a_n .\] When $|A \plus A| = 2|A| - 1$, these two orderings must be the same. So $a_2 + a_i = a_1 + a_{i + 1}$ for all $i = 2, \ldots, n - 1$. \end{proof} \textbf{Exercise:} If $A, B \subseteq \Zbb$, then $|A \plus B| \ge |A| + |B| - 1$ with equality if and only if $A$ and $B$ are arithmetic progressions with the same common difference. \begin{example} % Example 1.3 Let $A, B \subseteq \Zp$ with $p$ prime. Then $|A \plus B| \ge p + 1 \implies A \plus B = \Zp$. Indeed, $g \in A \plus B \iff A \cap (g \minus B) \neq \emptyset$ (note that $g - B$ means $\{g\} - B$). But $\forall g \in \Zp$, \[ |A \cap (g \minus B)| = |A| + |g \minus B| - |A \cup (g \minus B)| \ge |A| + |B| - p \ge 1 .\] \end{example} \begin{fcthm}[Cauchy-Davenport] % Theorem 1.4 Assuming: - $p$ is a prime - $A, B \subseteq \Zp$ nonempty Then: \[ |A \plus B| \ge \min\{p, |A| + |B| - 1\} .\] \end{fcthm} \begin{proof} Assume $|A| + |B| \le p + 1$. Without loss of generality assume that $1 \le |A| \le |B|$ and that $0 \in A$. Apply induction on $|A|$. The case $|A| = 1$ is trivial. Suppose $|A| \ge 2$, and let $0 \neq a \in A$. Since $\{a, 2a, 3a, \ldots, (p - 1)a, pa\} = \Zp$ and $|A| + |B| \le p + 1$, there must exist $m \ge 0$ such that $ma \in B$ but $(m + 1)a \notin B$. Let $B' = B - ma$, so $0 \in B'$, $a \notin B'$, $|B'| = |B|$. But $1 \le |A \cap B'| < |A|$, so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$. Since \[ (A \cap B') \plus (A \cup B') \subseteq A \plus B' ,\] we have \[ |A \plus B| = |A \plus B'| \ge |(A \cap B') \plus (A \cup B')| \ge |A \cap B'| + |A \cup B'| + 1 = |A| + |B| + 1 . \qedhere \] \end{proof} This fails for general abelian groups (or even general cyclic groups). \begin{example} % Example 1.5 Let $p$ be (fixed, small) prime, and let $V \le \Fp^n$ be a subspace. Then $V + V = V$, so $|V + V| = |V|$. In fact, if $A \subseteq \Fp^n$ is such that $|A + A| = |A|$, then $A$ must be a coset of a subspace. \end{example} \begin{example} % Example 1.6 \label{example_1_6} Let $A \subseteq \Fp^n$ be such that $|A \plus A| < \frac{3}{2}|A|$. Then there exists $V \le \Fp^n$ a subspace such that $|V| < \frac{3}{2} |A|$ and $A$ is contained in a coset of $V$. See Example Sheet 1. \end{example} \begin{fcdefn}[Ruzsa distance] % Definition 1.7 \glsnoundefn{rd}{Rusza distance}{N/A}% \glssymboldefn{rd}% Given finite sets $A, B \subseteq G$, we define the \emph{Ruzsa distance} $d(A, B)$ between $A$ and $B$ by \[ d(A, B) = \log \frac{|A \minus B|}{\sqrt{|A||B|}} \] \end{fcdefn}