Proposition 4.15. Assuming that:

  • f:𝔽5n

  • f1

  • fU3(G)δ

  • |𝔽5n|=Ωδ(1)

Then there exists S𝔽5n with |S|=Ωδ(|𝔽5n|) and a function ϕ:S𝔽5n^ such that
  • (i) |Δhf^(ϕ(h))|=Ωδ(1);
  • (ii) There are at least Ωδ(|𝔽5n|3) quadruples (s1,s2,s3,s4)S4 such that s1+s2=s3+s4 and ϕ(s1)+ϕ(s2)+ϕ(s4).