Theorem 4.7 (U2 Inverse Theorem). Assuming that:

  • f:𝔽pnβ†’β„‚

  • βˆ₯fβˆ₯L∞(𝔽pn)≀1

  • Ξ΄>1

  • βˆ₯fβˆ₯U2(𝔽pn)β‰₯Ξ΄

Then there exists bβˆˆπ”½pn such that
|𝔼xβˆˆπ”½pnf(x)e(βˆ’xβ‹…bβˆ•p)|β‰₯Ξ΄2.

In other words, |⟨f,Ο•βŸ©|β‰₯Ξ΄2 for Ο•(x)=e(βˆ’xβ‹…bβˆ•p) and we say β€œf correlates with a linear phase function”.