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1 Combinatorial methods

Definition 1.1 (Sumset). Let G be an abelian group. Given A,B ⊆ G, define the sumset
A+B to be

A+B := {a+ b : a ∈ A, b ∈ B}

and the difference set A−B to be

A−B := {a+ b : a ∈ A, b ∈ B}.

If A and B are finite, then certainly

max{|A|, |B|} ≤ |A+B| ≤ |A||B|.

Example 1.2. Let A = [n] := {1, 2, . . . , n} ⊆ Z. Then

|A+A| = |{2, . . . , 2n}| = 2n− 1 = 2|A| − 1.

Lemma 1.3. Assuming that:

• A ⊆ Z is finite.

Then |A+A| ≥ 2|A| − 1, with equality if and only if A is an arithmetic progression.

Proof. Let A = {a1, a2, . . . , an} with a1 < a2 < · · · < an. Then

a1 + a1 < a1 + a2 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an + an,

so |A+A| ≥ 2|A| − 1. But we could also have written

a1 + a1 < a1 + a2 < a2 + a2 < a2 + a3 < a2 + a4 < · · · < a2 + an < a3 + an < · · · < an + an.

When |A + A| = 2|A| − 1, these two orderings must be the same. So a2 + ai = a1 + ai+1 for all
i = 2, . . . , n− 1.

Exercise: If A,B ⊆ Z, then |A+B| ≥ |A|+ |B|−1 with equality if and only if A and B are arithmetic
progressions with the same common difference.

Example 1.4. Let A,B ⊆ Z/pZ with p prime. Then |A + B| ≥ p + 1 =⇒ A + B = Z/pZ.
Indeed, g ∈ A+B ⇐⇒ A ∩ (g −B) 6= ∅ (note that g −B means {g} −B). But ∀g ∈ Z/pZ,

|A ∩ (g −B)| = |A|+ |g −B| − |A ∪ (g −B)| ≥ |A|+ |B| − p ≥ 1.
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Theorem 1.5 (Cauchy-Davenport). Assuming that:

• p is a prime

• A,B ⊆ Z/pZ nonempty

Then
|A+B| ≥ min{p, |A|+ |B| − 1}.

Proof. Assume |A|+ |B| ≤ p+1. Without loss of generality assume that 1 ≤ |A| ≤ |B| and that 0 ∈ A.
Apply induction on |A|. The case |A| = 1 is trivial. Suppose |A| ≥ 2, and let 0 6= a ∈ A.

Since {a, 2a, 3a, . . . , (p − 1)a, pa} = Z/pZ and |A| + |B| ≤ p + 1, there must exist m ≥ 0 such that
ma ∈ B but (m+ 1)a /∈ B. Let B′ = B −ma, so 0 ∈ B′, a /∈ B′, |B′| = |B|.

But 1 ≤ |A ∩B′| < |A|, so the inductive hypothesis applies to A ∩B′ and A ∪B′. Since

(A ∩B′) + (A ∪B′) ⊆ A+B′,

we have

|A+B| = |A+B′| ≥ |(A ∩B′) + (A ∪B′)| ≥ |A ∩B′|+ |A ∪B′|+ 1 = |A|+ |B|+ 1.

This fails for general abelian groups (or even general cyclic groups).

Example 1.6. Let p be (fixed, small) prime, and let V ≤ Fn
p be a subspace. Then V +V = V ,

so |V + V | = |V |. In fact, if A ⊆ Fn
p is such that |A + A| = |A|, then A must be a coset of a

subspace.

Example 1.7. Let A ⊆ Fn
p be such that |A+A| < 3

2 |A|. Then there exists V ≤ Fn
p a subspace

such that |V | < 3
2 |A| and A is contained in a coset of V . See Example Sheet 1.

Definition 1.8 (Ruzsa distance). Given finite sets A,B ⊆ G, we define the Ruzsa distance
d(A,B) between A and B by

d(A,B) = log
|A−B|√
|A||B|

Lecture 2
Note that this is symmetric, but is not necessarily non-negative, so we cannot prove that it is a metric.
It does, however, satisfy triangle inequality:

Lemma 1.9 (Ruzsa’s triangle inequality). Assuming that:

• A,B,C ⊆ G finite
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Then
d(A,C) ≤ d(A,B) + d(B,C).

Proof. Observe that
|B| · |A− C| ≤ |A−B| · |B − C|.

Indeed, writing each d ∈ A− C as d = ad − cd with ad ∈ A, cd ∈ C, the map

φ : B × (A− C) → (A−B)× (B − C)

(b, d) 7→ (ad − b, b− cd)

is injective. The triangle inequality now follows from the definition.

Definition 1.10 (Doubling / difference constant). Given a finite A ⊆ G, we write

σ(A) :=
|A+A|
|A|

for the doubling constant of A and

δ(A) :=
|A−A|
|A|

for the difference constant of A.

Then Lemma 1.9 shows, for example, that

log δ(A) = d(A,A) ≤ d(A,−A) + d(−A,A) = 2 log σ(A).

So δ(A) ≤ σ(A)2, or |A−A| ≤ |A+A|2
|A| .

Notation. Given A ⊆ G and l,m ∈ N0, we write

lA−mA := A+A+ · · ·+A︸ ︷︷ ︸
l times

−A−A− · · · −A︸ ︷︷ ︸
m times

.

Theorem 1.11 (Plúnnecke’s Inequality). Assuming that:

• A,B ⊆ G are finite sets

• |A+B| ≤ K|A| for some K ≥ 1

Then ∀l,m ∈ N0,
|lB −mB| ≤ Kl+m|A|.
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Proof. Choose a non-empty subset A′ ⊆ A such that the ratio |A′+B|
|A′| is minimised, and call this ratio

K ′. Then |A′ +B| = K ′|A′|, K ′ ≤ K, and ∀A′′ ⊆ A, |A′′ +B| ≥ K ′|A′′|.

Claim: For every finite C ⊆ G, |A′ +B + C| ≤ K ′|A′ + C|.

Let’s complete the proof of the theorem assuming the claim. We first show that ∀m ∈ N0, |A′+mB| ≤
K ′m|A′|. Indeed, the case m = 0 is trivial, and m = 1 is true by assumption. Suppose m > 1 and the
inequality holds for m− 1. By the claim with C = (m− 1)B, we get

|A′ +mB| = |A′ +B + (m− 1)B| ≤ K ′|A′ + (m− 1)B| ≤ K ′m|A′|.

But as in the proof of Ruzsa’s triangle inequality, ∀l,m ∈ N0, we can show

|A′||lB −mB| ≤ |A′ + lB||A′ +mB| ≤ K ′l|A′|K ′m|A′| = K ′l+m|A′|2.

Hence |lB −mB| ≤ K ′l+m|A′| ≤ K ′l+m|A|, which completes the proof (assuming the claim).

We now prove the claim by induction on |C|. When |C| = 1 the statement follows from the assumptions.
Suppose the claim is true for C, and consider C ′ = C ∪ {x} for some x /∈ C. Observe that

A′ +B + C ′ = (A′ +B + C) + ((A′ +B + x) \ (D +B + x))

with D = {a ∈ A′ : a+B + x ⊆ A′ +B +X}.

By definition of K ′, |D +B| ≥ K ′|D|, so

|A′ +B + C ′| ≤ |A′ +B + C|+ |A′ +B + x| − |D +B + x|
IH
≤ K ′|A′ + C|+K ′|A′| −K ′|D|
= K ′(|A′ + C|+ |A′| − |D|)

We apply this argument a second time, writing

A′ + C ′ = (A′ + C) t ((A′ + x) \ (E + x))

where E = {a ∈ A′ : a+ x ∈ A′ + C} ⊆ D. We conclude that

|A′ + C ′| = |A′ + C|+ |A′ + x| − |E + x| ≥ |A′ + C|+ |A′| − |D|

so
|A′ +B + C ′| ≤ K ′(|A′ + C|+ |A′| − |D|) ≤ K ′|A′ + C ′|,

proving the claim.

We are now in a position to generalise Example 1.7.

Theorem 1.12 (Freiman-Ruzsa). Assuming that:

• A ⊆ Fn
p
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• |A+A| ≤ K|A| (i.e. σ(A) ≤ K)

Then A is contained in a subspace H ≤ Fn
p of size |H| ≤ K2pK

4 |A|.

Lecture 3

Proof. Choose X ⊆ 2A−A maximal such that the translates x+A with x ∈ X are disjoint. Such a set
X cannot be too large: ∀x ∈ X, x+A ⊆ 3A−A, so by Plúnnecke’s Inequality, since |3A−A| ≤ K4|A|,

|X||A| =

∣∣∣∣∣ ⋃
x∈X

(x+A)

∣∣∣∣∣ ≤ |3A−A|.

So |X| ≤ K4. We next show
2A−A ⊆ X +A−A. (∗)

Indeed, if y ∈ 2A−A and y /∈ X, then by maximality of X, y+A∩ x+A 6= ∅ for some x ∈ X (and if
y ∈ X, then clearly y ∈ X +A−A).

It follows from (∗) by induction that ∀l ≥ 2,

lA−A ⊆ (l − 1)X +A−A, (∗∗)

since

lA−A = A+ (l − 1)A−A︸ ︷︷ ︸
⊆(l−2)X+A−A

⊆ (l − 2)X + 2A−A︸ ︷︷ ︸⊆ X +A−A ⊆ (l − 1)X +A−A.

Now let H ≤ Fn
p be the subgroup generated by A, which we can write as

H =
⋃
l≥1

(lA−A)
(∗∗)
⊆ Y +A−A

where Y ≤ Fn
p is the subgroup generated by X.

But every element of Y can be written as a sum of |X| elements of X with coefficients amongst
0, 1, . . . , p− 1, hence |Y | ≤ p|X| ≤ pK

4 . To conclude, note that

|U | ≤ |Y ||A−A| ≤ pK
4

≤ pK
4

K2|A|,

where we use Plúnnecke’s Inequality or even Ruzsa’s triangle inequality.

Example 1.13. Let A = V ∪ R where V ≤ Fn
p is a subspace of dimension K � d � n −K

and R consists of K − 1 linearly independent vectors not in V .
Then

|A| = |V ∪R| = |V |+ |R| = pn/k +K − 1 ∼ pn/k = |V |
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and
|A+A| = |(V ∪R) + (V ∪R)| = |V ∪ (V +R) ∪ (R+R)| ∼ K|V |.

But any subspace K ≤ Fn
p containing A must have size at least pn/K+(K−1) ∼ |V | · pK , so the

exponential dependence on K is necessary.

Theorem 1.14 (Polynomial Freiman-Ruzsa, due to Gowers–Green–Manners–Tao 2024). As-
suming that:

• A ⊆ Fn
p

• |A+A| ≤ K|A|

Then there exists a subspace K ≤ Fn
p of size at most C1(K)|A| such that for some x ∈ Fn

p ,

|A ∩ (x+K)| ≥ |A|
C2(K)

,

where C1(K) and C2(K) are polynomial in K.

Proof. Omitted, because the techniques are not relevant to other parts of the course. See Entropy
Methods in Combinatorics next term.

Definition 1.15. Given A,B ⊆ G we define the additive energy between A and B to be

E(A,B) = |{(a, a′, b, b′) ∈ A×A×B ×B : a+ b = a′ + b′}|.

We refer to the quadruples (a, a′, b, b′) such that a+ b = a′ + b′ as additive quadruples.

Example 1.16. Let V ≤ Fn
p be a subspace. Then E(V ) = E(V, V ) = |V |3.

On the other hand, if A ⊆ Z/pZ is chosen at random from Z/pZ (each element chosen indepen-
dently with probability α > 0), then with high probability

E(A) = E(A,A) = α4p3 = α|A|3.

Lemma 1.17. Assuming that:

• A,B ⊆ G

• both non-empty

Then
E(A,B) ≥ |A|2|B|2

|A+B|
.
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Proof. Define rA+B(x) = |{(a, b) ∈ A×B : a+b = x}| (and notice that this is the same as |A∩(x−B)|).
Observe that

E(A,B) = |{(a, a′, b, b′) ∈ A2 ×B2 : a+ b = a′ + b′}

=
∑
x∈G

rA+B(x)
2

=
∑

x∈A+B

rA+B(x)
2

≥
(∑

x∈A+B rA+B(x)
)2

|A+B|
by Cauchy-Schwarz

but ∑
x∈G

|A ∪ (x−B)| =
∑
x∈G

∑
y∈G

1A(y)1x−B(y)

=
∑
x∈G

∑
y∈G

1A(y)1B(x− y)

= |A||B|

(As usual, 1A here means the indicator function).

Lecture 4
In particular, if |A+A| ≤ K|A|, then

E(A) = E(A,A) ≥ |A|4

|A+A|
≥ |A|3

K
.

The converse is not true.

Example 1.18. Let G be your favourite (class of) abelian group(s). Then there exist constants
θ, η > 0 such that for all sufficiently large n, there exists A ⊆ G, with |A| ≥ n satisfying
E(A) ≥ η|A|3 and |A+A| ≥ θ|A|2.

Theorem 1.19 (Balog–Szemeredi–Gowers, Schoen). Assuming that:

• A ⊆ G is finite

• E(A) ≥ η|A|3 for some η > 0

Then there exists A′ ⊆ A of size at least c1(η)|A| such that |A′ + A′| ≤ |A′|
c2(η)

, where c1(η) and
c2(η) are polynomial in η.

Idea: Find A′ ⊆ A such that ∀a, b ∈ A′ such that a−b has many representations as (a1−a2)+(a3−a4)
with ai ∈ A.

We first prove a technical lemma, using a technique called “dependent random choice”.
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Definition 1.20 (gamma-popular differences). Given A ⊆ G and γ > 0, let

Pγ = {x ∈ G : |A ∩ (x+A)| ≥ γ|A|}

be the set of γ-popular differences of A.

Lemma 1.21. Assuming that:

• A ⊆ G is finite

• E(A) ≥ η|A|3

• c > 0

Then there is a subset X ⊆ A of size |X| ≥ η|A|/3 such that for all but a (16c)-proportion of
pairs (a, b) ∈ X2, a− b ∈ Pcη.

Proof. Let U = {x ∈ G : |A ∩ (x+A)| ≤ 1
2η|A|}. Then∑

x∈U

|A ∩ (x+A)|2 =
1

2
η|A|

∑
x

|A ∩ (x+A)|

=
1

2
η|A|3

=
1

2
E(A)

For 0 ≤ i ≤
⌈
log2 η

−1
⌉
, let

Qi =

{
x ∈ G :

|A|
2i+1

< |A ∩ (x+A)| ≤ |A|
2i

}
,
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and set δi = η−12−2i. Then∑
i

δi|Qi| =
∑
i

|Qi|
η22i

=
1

η|A|2
∑
i

|A|2

22i
|Qi|

=
1

η|A|2
∑
i

|A|2

22i

∑
x/∈U

1{
|A|

2i+1 <|A∩(x+A)|≤ |A|
2i

}

≥ 1

η|A|2
∑
x/∈U

|A ∩ (x+A)|2

≥ 1

η|A|2
· 1
2
E(A)

(∑
x∈U

|A ∩ (x+A)|2 ≤ 1

2
E(A)

)

=
1

2
|A| (∗)

Let S = {(a, b) ∈ A2 : a− b /∈ Pcη}. Then∑
i

∑
(a,b)∈S

|(A− a) ∩ (A− b) ∩Qi| ≤
∑

(a,b)∈S

|(A− a) ∩ (A− b)|︸ ︷︷ ︸
=|A ∩ (a− b+A)| ≤ cη|A|︸ ︷︷ ︸

by definition of S

≤ |S| · cη|A|
≤ cη|A|3

≤ 2cη|A|2 · 1
2
|A|

(∗)
≤ 2cη|A|2

∑
i

δi|Qi|

Hence there exists i0 such that∑
(a,b)∈S

|(A− a) ∩ (A− b) ∩Qi0 | ≤ 2cη|A|2δi0 |Qi0 |.

Let Q = Qi0 , δ = δi0 , λ = 2−i0 . So∑
(a,b)∈S

|(A− a) ∩ (A− b) ∩Q| ≤ 2cηδ|A|2|Q|. (∗∗)

Find x such that X = |A ∩ (A+ x)| is large.Lecture 5

Given x ∈ G, let X(x) = A ∩ (x+A). Then

Ex∈Q|X(x)| = 1

|Q|
∑
x∈Q

|A ∩ (x+A)| ≥ 1

2
λ|A|.
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Let T (x) = {(a, b) ∈ X(x)2 : a− b /∈ Pcη}. Then

EX∈Q|T (x)| = Ex∈Q|{(a, b) ∈ (A ∩ ( x︸︷︷︸
x∈A−a∩A−b

+A))2 : a− b /∈ Pcη}|

=
1

|Q|
∑
x∈Q

|{(a, b) ∈ S : x ∈ A− a ∩A− b}|

=
1

|Q|
∑

(a,b)∈S

|(A− a) ∩ (A− b) ∩Q|

≤ 1

|Q|
2cη|A|2δ|Q|

= 2cηδ|A|2

= 2cλ2|A|2

Therefore,

Ex∈Q|X(x)|2 − (16c)−1|T (x)|
C-S
≤ (Ex∈Q|X(x)|)2 − (16c)−1Ex∈Q|T (x)|

≤
(
λ

2

)2

|A|2 − (16c)−12cλ2|A|2

=

(
λ2

4
− λ2

8

)
|A|2

=
λ2

8
|A|

So there exists x ∈ Q such that |X(x)|2 ≥ λ2

8 |A|2, in which case we have

|X| ≥ λ√
8
|A| ≥ η

3
|A|

and |T (x)| ≤ 16c|X|2.

Proof of Theorem 1.19. Given A ⊆ G with E(A) ≥ η|A|3, apply Lemma 1.21 with c = 2−7 to otain
X ⊆ A of size |X| ≥ η

3 |A| such that for all but 1
8 of pairs (a, b) ∈ X2, a− b ∈ Pη/27 . In particular, the

bipartite graph
G = (X∪̇X, {(x, y) ∈ X ×X : x− y ∈ Pη/27})

has at least 7
8 |X|2 edges. Let A′ =

{
x ∈ X : deg(x) ≥ 3

4 |X|
}

.
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Clearly, |A′| ≥ |X|
8 . For any a, b ∈ A′, there are at least |X|

2 elements y ∈ X such that (a, y), (b, y) ∈
E(G) (a− y, b− y ∈ Pη/27).

Thus a− b = (a− y)− (b− y) has at least

η

6
|A|︸ ︷︷ ︸

choices for y

· η
27

|A| · η
27

|A| ≥ η3

217
|A|3

representations of the form a1 − a2 − (a3 − a4) with ai ∈ A.

It follows that

η3

217
|A|3|A′ −A′| ≤ |A|4

=⇒ |A′ −A′| ≤ 217η−3|A|
≤ 222η−4|A′|

Thus |A′ +A′| ≤ 244η−8|A′|.
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2 Fourier-analytic techniques

In this chapter we will assume that G is finite abelian.

G comes equipped with a group Ĝ of characters, i.e. homomorphisms γ : G → C. In fact, Ĝ is
isomorphic to G.

See Representation Theory notes for more information about characters and proofs of this as well as
some of the facts below.

Example 2.1.

(i) If G = Fn
p , then for any γ ∈ Ĝ = Fn

p , we have an associated character γ(x) = e(γ · x/p),
where e(y) = e2πiy.

(ii) If G = Z/NZ, then any γ ∈ Ĝ = Z/NZ can be associated to a character γ(x) = e(γx/N).

Notation. Given B ⊆ G nonempty, and any function g : B → C, let

Ex∈Bg(x) =
1

|B|
∑
x∈B

g(x).

Lemma 2.2. Assuming that:

• γ ∈ Ĝ

Then

Ex∈Gγ(x) =

{
1 if γ = 1

0 otherwise
,

and for all x ∈ G, ∑
γ∈Ĝ

γ(x) =

{
|Ĝ| if x = 0

0 otherwise
.

Proof. The first equality in eqch case is trivial. Suppose γ 6= 1. Then there exists y ∈ G with γ(y) 6= 1.
Then

γ(y)Ez∈Gγ(z) = Ez∈Gγ(y + z)

= Ez′∈Gγ(z
′)

So Ez∈Gγ(z) = 0.

For the second part, note that given x 6= 0, there must by γ ∈ Ĝ such that γ(x) 6= 1, for otherwise Ĝ
would act trivially on 〈x〉, hence would also be the dual group for G/〈x〉, a contradiction.
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Definition 2.3 (Fourier transform). Given f : G→ C, define its Fourier transform f̂ : Ĝ→ C
by

f̂(γ) = Ex∈Gf(x)γ(x).

Lecture 6
It is easy to verify the inversion formula: for all x ∈ G,

f(x) =
∑
γ∈Ĝ

f̂(γ)γ(x).

Indeed, ∑
γ∈Ĝ

f̂(γ)γ(x) =
∑
γ∈Ĝ

Ey∈Gf(y)γ(y)γ(x)

= Ey∈Gf(y)
∑
γ∈Ĝ

γ(x− y)

︸ ︷︷ ︸
=|G| iff x = y

= f(x) by Lemma 2.2

Given A ⊆ G, the indicator or characteristic function of A, 1A : G→ {0, 1} is defined as usual.

Note that
1̂A(1) = Ex∈G1A(x)1(x) =

|A|
|G|

.

The density of A in G (often denoted by α).

Definition (Characteristic measure). Given non-empty A ⊆ G, the characteristic measure
µA : G→ [0, |G|] is defined by µA(x) = α−1

1A(x).
Note that Ex∈GµA(x) = 1 = µ̂A(1).

Definition (Balanced function). The balanced function fA : G → [−1, 1] is given by fA(x) =

1A(x)− α. Note that Ex∈GfA(x) = 0 = f̂A(1).

Example 2.4. Let V ≤ Fn
p be a subspace. Then for t ∈ F̂n

p , we have

1̂V (t) = Ex∈Fn
p
1V (x)e

(
−x · t

p

)
=

|V |
pn

1V ⊥(t)

where V ⊥ = {t ∈ F̂n
p : x ·t = 0 ∀x ∈ V } is the annihilator of V . In other words, 1̂V (t) = µV ⊥(t).
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Example 2.5. Let R ⊆ G be such that each x ∈ G lies in R independently with probability 1
2 .

Then with high probability

sup
γ 6=1

|1̂R(γ)| = O

(√
log |G|
|G|

)
.

This follows from Chernoff’s inequality: Given C-valued independent random variables
X1, X2, . . . , Xn with mean 0, then for all θ > 0, we have

P

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ θ

√√√√ n∑
i=1

‖Xi‖2L∞(P)

 ≤ 4 exp

(
−θ

2

4

)
.

Example 2.6. Let Q = {x ∈ Fn
p : x · x = 0} ⊆ Fn

p with p > 2. Then

|Q|
pn

=
1

p
+O(p−

n
2 )

and supt 6=0 |1̂Q(t)| = O(p−
n
2 ).

Given f, g : G→ C, we write

〈f, g〉 = Ex∈Gf(x)g(x) and 〈f̂ , ĝ〉 =
∑
γ∈Ĝ

f̂(γ)ĝ(γ).

Consequently,
‖f‖2L2(G) = Ex∈G|f(x)|2 and

∥∥∥f̂∥∥∥2
l2(Ĝ)

=
∑
γ∈Ĝ

|f̂(γ)|2.

Lemma 2.7. Assuming that:

• f, g : G→ C

Then

(i) ‖f‖2L2(G) =
∥∥∥f̂∥∥∥2

l2(Ĝ)
(Parseval’s identity)

(ii) 〈f, g〉 = 〈f̂ , ĝ〉 (Plancherel’s identity)

Proof. Exercise (hopefully easy).

15



Definition 2.8 (Spectrum). Let 1 ≥ ρ > 0 and f : G → C. Define the ρ-large spectrum of f
to be

Specρ(f) = {γ ∈ Ĝ : |f̂(γ)| ≥ ρ ‖f‖1}.

Example 2.9. By Example 2.4, if f = 1V with V ≤ Fn
p , then ∀ρ > 0,

Spec ρ(1V ) =

{
t ∈ F̂n

p : |1̂V (t)| ≥ ρ
|V |
pn

}
= V ⊥.

Lemma 2.10. Assuming that:

• ρ > 0

Then

|Spec ρ(f)| ≤ ρ−2 ‖f‖
2
2

‖f‖21
.

Proof. By Parseval’s identity,

‖f‖22 =
∥∥∥f̂∥∥∥2

2

=
∑
γ∈Ĝ

|f̂(γ)|2

≥
∑

γ∈Spec ρ(f)

|f̂(γ)|2

≥ | Spec ρ(f)|(ρ ‖f‖1)
2

In particular, if f = 1A for A ⊆ G, then

‖f‖1 = α =
|A|
|G|

= ‖f‖22 ,

so |Spec ρ(1A)| ≤ ρ−2α−1.Lecture 7

Definition 2.11 (Convolution). Given f, g : G→ C, we define their convolution f ∗ g : G→ C
by

f ∗ g(x) = Ey∈Gf(y)g(x− y) ∀x ∈ G.

16



Example 2.12. Given A,B ⊆ G,

1A ∗ 1B(x) = Ey∈G1A(y)1B(x− y) = Ey∈G1A(y)1x−B(y) =
|A ∩ (x−B)|

|G|
=

1

|G|
rA+B(x).

In particular, supp(1A ∗ 1B) = A+B.

Lemma 2.13. Assuming that:

• f, g : G→ C

Then
f̂ ∗ g(γ) = f̂(γ)ĝ(γ)∀γ ∈ Ĝ.

Proof.

f̂ ∗ g(γ) = Ex∈Gf ∗ g(x)γ(x)

= Ex∈GE[∈y]Gf(y)g(x− y︸ ︷︷ ︸
u

)γ(x)

= Eu∈GE[∈y]Gf(y)g(u)γ(u+ y)

= f̂(γ)ĝ(γ)

Example 2.14.
Ex+y=z+wf(x)f(y)f(z)f(w) = ‖f̂‖4

l4(Ĝ)
.

In particular,

‖1̂A‖4l4(Ĝ)
=
E(A)

|G|3

for any A ⊆ G.

Theorem 2.15 (Bogolyubov’s lemma). Assuming that:

• A ⊆ Fn
p be a set of density α

Then there exists V ≤ Fn
p of codimension ≤ 2α−2 such that V ⊆ A+A−A−A.

Proof. Observe
2A− 2A = supp(1A ∗ 1A ∗ 1−A ∗ 1−A︸ ︷︷ ︸

=:g

),

17



so wish to find V ≤ Fn
p such that g(x) > 0 for all x ∈ V . Let S = Spec ρ(1A) with ρ =

√
α
2 and let

V = 〈S〉⊥. By Lemma 2.10, codim(V ) ≤ |S| ≤ ρ−2α−1. Fix x ∈ V .

g(x) =
∑
t∈F̂n

p

ĝ(t)e(x · t/p)

=
∑
t∈F̂n

p

|1̂A(t)|4e(x · t/p) by Lemma 2.13

= α4 +
∑
t6=0

|1̂A(t)|4e(x · t/p)

= α4 +
∑

t∈S\{0}

|1̂A(t)|4e(x · t/p)

︸ ︷︷ ︸
(1)

+
∑
t/∈S

|1̂A(t)|4e(x · t/p)︸ ︷︷ ︸
(2)

Note (1) ≥ (ρα)4 since x · t = 0 for all t ∈ S and

|(2)| ≤ sup
t/∈S

|1̂A(t)|2
∑
t/∈S

|1̂A|2

≤ sup
t∈S

|1̂A(t)|2
∑
t/∈S

|1̂A|2

≤ (ρα)2‖1A‖22 by Parseval’s identity
= ρ2α3

hence g(x) > 0 (in fact, ≥ α4

2 ) for all x ∈ V and codim(V ) ≤ 2α−2.

Example 2.16. The set A = {x ∈ Fn
2 : |x| ≥ n

2 +
√
n
2 } (where |x| counts the number of 1s

in x) has density ≥ 1
8 , but there is no coset C of any subspace of codimension

√
n such that

C ⊆ A+A(= A−A).

Lemma 2.17. Assuming that:

• A ⊆ Fn
p of density α

• ρ > 0

• supt6=0 |1̂A(t)| ≥ ρα

Then there exists V ≤ Fn
p of codimension 1 and x ∈ Fn

p such that

|A ∩ (x+ V )| ≥ α
(
1 +

ρ

2

)
|V |.

18



Proof. Let t 6= 0 be such that |1̂A(t)| ≥ ρα, and let V = 〈t〉⊥. Write vj + V for j ∈ [p] = {1, 2, . . . , p}
for the p distinct cosets vj + V = {x ∈ Fn

p : x · t = j} of V . Then

1̂A(t) = f̂A(t)

= Ex∈Fn
p
(1A(x)− α)e(−x · t/p)

= Ej∈[p]Ex∈vj+V (1A(x)− α)e(−j/p)

= Ej∈[p]

 |A ∩ (vj + V )|
|vj + V |

− α︸ ︷︷ ︸
=aj

 e(−j/p)

By triangle inequality, Ej∈[p]|aj | ≥ ρα. But note that Ej∈[p]aj = 0 so Ej∈[p]aj + |aj | ≥ ρα, hence there
exists j ∈ [p] such that aj + |aj | ≥ ρα. Then aj ≥ ρα

2 .

Lecture 8

Notation. Given f, g, h : G→ C, write

T3(f, g, h) = Ex,d∈Gf(x)g(x+ d)h(x+ 2d).

Notation. Given A ⊆ G, write
2 ·A = {2a : a ∈ A},

to be distinguished from 2A = A+A = {a+ a′ : a, a′ ∈ A}.

Lemma 2.18. Assuming that:

• p ≥ 3 prime

• A ⊆ Fn
p of density α > 0

• supt6=0 |1̂A(t)| ≤ ε

Then the number of 3-term arithmetic progressions in A differs from α3(pn)2 by at most ε(pn)2.
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Proof. The number of 3-term arithmetic progressions in A is (pn)2 times

T 3(1A,1A,1A) = Ex,d∈Fn
p
1A(x)1(x+ d)1A(x+ 2d)

= Ex,y∈Fn
p
1A(x)1A(y)1A(2y − x)

= Ey∈G1A(y)Ex∈G1A(x)1A(2y − x)

= Ey∈G1A(y)1A ∗ 1A(2y)

= 〈12·A,1A ∗ 1A〉

By Plancherel’s identity and Lemma 2.13, we have

= 〈1̂2·A, 1̂A
2〉

=
∑
t

1̂2·A(t)1̂A(t)2

= α3 +
∑
t 6=0

1̂2·A(t)1̂A(t)2

but ∣∣∣∣∣∣
∑
t6=0

1̂2·A(t)1̂A(t)
2

∣∣∣∣∣∣ ≤ sup
t6=0

|1̂A(t)|
∑
t 6=0

|1̂2·A(t)||1̂A(t)|

CS
≤ sup

t 6=0
|1̂A(t)|

(∑
t

|1̂2·A(t)|2
∑
t

|1̂A(t)|2
) 1

2

≤ ε‖1̂2·A‖2‖1̂A‖2
= ε · α

by Parseval’s identity.

Theorem 2.19 (Meshulam’s Theorem). Assuming that:

• A ⊆ Fn
p a set containing no non-trivial 3 term arithmetic progressions

Then |A| = O
(

pn

log pn

)
.

Proof. By assumption,

T 3(1A,1A,1A) =
|A|
(pn)2

=
α

pn
.

But as in (the proof of) Lemma 2.18,

|T 3(1A,1A,1A)− α3| ≤ sup
t 6=0

|1̂A(t)| · α,
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so provided pn ≥ 2α−2, i.e. T 3(1A,1A,1A) ≤ α3

2 we have supt6=0 |1̂A(t)| ≥ α2

2 .

So by Lemma 2.17 with ρ = α
2 , there exists V ≤ Fn

p of codimension 1 and x ∈ Fn
p such that |A ∩ (x+

V )| ≥
(
α+ α2

4

)
|V |.

We iterate this observation: let A0 = A, V0 = Fn
p , α0 = |A0|

|V0| . At the i-th step, we are given a
set Ai−1 ⊆ Vi−1 of density αi−1 with no non-trivial 3 term arithmetic progressions. Provided that
pdim(Vi−1) ≥ 2α−2

i−1, there exists Vi ≤ Vi−1 of codimension 1, xi ∈ Vi−1 such that

|(A− xi) ∩ Vi| ≥
(
αi−1 +

(αi−1)
2

4

)
|Vi|.

Set Ai = (A− xi) ∩ Vi ⊆ Vi, has density ≥ αi−1 +
(αi−1)

2

4 , and is free of non-trivial 3 term arithmetic
progressions.

Through this iteration, the density increases from α to 2α in at most α(
α2

4

) = 4 · α−1 steps.

2α to 4α in at most 2α(
(2α)2

4

) = 2α−1 steps and so on.

So reaches 1 in at most
4α−1

(
1 +

1

2
+

1

4
+

1

8
+ · · ·

)
≤ 8α−1

steps. The argument must end with dim(Vi) ≥ n− 8α−1, at which point we must have had pdim(Vi) <
2α2

i−1 ≤ 2α−2, or else we could have continued.

But we may assume that α ≥
√
2p−

n
4 (or α−2 < 2p

n
2 ) whence pn−8α−1 ≤ p

n
2 , or n

2 ≤ 2α−1.

At the time of writing, the largest known subset of Fn
3 containing no non-trivial 3 term arithmetic

progressions has size (2.2202)n.

We will prove an upper bound of the form (2.756)n.

Theorem 2.20 (Roth’s theorem). Assuming that:

• A ⊆ [N ] = {1, . . . , N}

• A contains no non-trivial 3 term arithmetic progressions

Then |A| = O
(

N
log logN

)
.

Lecture 9

Example 2.21 (Behrend’s example). There exists A ⊆ [N ] of size at least |A| ≥
exp(−c

√
logN)N containing no non-trivial 3 term arithmetic progressions.
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Lemma 2.22. Assuming that:

• A ⊆ [N ] of density α > 0

• N > 50α−2

• A contains no non-trivial 3 term arithmetic progressions

• p a prime in
[
N
3 ,

2N
3

]
• let A′ = A ∩ [p] ⊆ Z/pZ

Then one of the following holds:

(i) supt6=0 |1̂A′(t)| ≥ α2

10 (where the Fourier coefficient is computed in Z/pZ)

(ii) There exists an interval J ⊆ [N ] of length ≥ N
3 such that |A ∩ J | ≥ α

(
1 + α

400

)
|J |

Proof. We may assume that |A′| = |A ∩ [p]| ≥ α
(
1− α

200

)
p since otherwise

|A ∩ [p+ 1, N ]| ≥ αN −
(
α
(
1− α

200

)
p
)

= α(N − p) +
α2

200
p

≥
(
α+

α2

400

)
(N − p)

so we would be in Case (ii) with J = [p+1, N ]. Let A′′ = A′∩
[
p
3 ,

2p
3

]
. Note that all 3 term arithmetic

progressions of the form (x, x+ d, x+ 2d) ∈ A′ ×A′′ ×A′′ are in fact arithmetic progressions in [N ].

If |A′ ∩
[
p
3

]
| or |A′ ∩

[
2p
3 , p

]
| were at least 2

5 |A
′|, we would again be in case (ii). So we may assume

that |A′′| ≥ |A′|
5 .

Now as in Lemma 2.18 and Theorem 2.19,

α′′

p
=

|A′′|
p2

T 3(1A′ ,1A′′ ,1A′′)

= α′(α′′)2 +
∑
t

1̂A′(t)1̂A′′(t)1̂2·A′′(t)

where α′ = |A′|
p and α′′ = |A′′|

p . So as before,

α′α′′

2
≤ sup

t6=0
|1A′(t)| · α′′,

provided that α′′

p ≤ 1
2α

′(α′′)2, i.e. 2
p ≤ α′α′′. (Check this is satisfied).
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Hence
sup
t6=0

|1̂A′(t)| ≥ α′α′′

2
≥ 1

2

(
α
(
1− α

200

))2
· 2
5
≥ α2

10
.

Lemma 2.23. Assuming that:

• m ∈ N

• ϕ : [m] → Z/pZ be given by x 7→ tx for some t 6= 0

• ε > 0

Then there exists a partition of [m] into progressions Pi of length li ∈
[
ε
√
m

2 , ε
√
m
]

such that

diam(ϕ(Pi)) = max
x,y∈Pi

|ϕ(x)− ϕ(y)| ≤ εp

for all i.

Proof. Let u = b
√
mc and consider 0, t, 2t, . . . , ut. By Pigeonhole, there exists 0 ≤ v < w ≤ usuch that

|wt−vt| = |(w−v)t| ≤ p
u . Set s = w−v, so |st| ≤ p

u . Divide [m] into residue classes modulo s, each of
which has size at least m

s ≥ m
4 . But each residue class can be divided into arithmetic progressions of

the form a, a+ s, . . . , a+ ds with εu2 < d ≤ εu. The diameter of the image of each progression under
ϕ is |dst| ≤ d p

u ≤ εu p
u = εp.

Lemma 2.24. Assuming that:

• A ⊆ [N ] of density α > 0

• p a prime in
[
N
3 ,

2N
3

]
• let A′ = A ∩ [p] ⊆ Z/pZ

• |1̂A′(t)| ≥ α2

20 for some t 6= 0

Then there exists a progression P ⊆ [N ] of length at least α2
√
N

500 such that |A ∩ P | ≥
α
(
1 + α

80

)
|P |.

Lecture 10

Proof. Let ε = α2

40π , and use Lemma 2.23 to partition [p] into progressions Pi of length

≥ ε

√
p

2
≥ α2

40π

√
N
3

2
≥ α2

√
N

500
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and diam(ϕ(Pi)) ≤ εp. Fix one xi from each of the Pi. Then

α2

20
≤ |f̂A′(t)|

=

∣∣∣∣∣1p∑
i

∑
x∈Pi

fA′(x)e(−xt/p)

∣∣∣∣∣
=

1

p

∣∣∣∣∣∑
i

∑
x∈Pi

fA′(x)e(−xit/p) +
∑
i

∑
x∈Pi

fA′(x)(e(−xt/p)− e(−xit/p))

∣∣∣∣∣
≤ 1

p

∑
i

∣∣∣∣∣∑
x∈Pi

fA′(x)

∣∣∣∣∣+ 1

p

∑
i

∑
x∈Pi

|fA′(x)|| e(−xt/p)− e(−xit/p)︸ ︷︷ ︸
≤2πε

since |t(x − xi)| ≤ εp

|

So ∑
i

∣∣∣∣∣∑
x∈Pi

fA′(x)

∣∣∣∣∣ ≥ α2

40
p.

Since fA′ has mean zero, ∑
i

(∣∣∣∣∣∑
x∈Pi

fA′(x)

∣∣∣∣∣+ ∑
x∈Pi

fA′(x)

)
≥ α2

40
p,

hence there exists i such that ∣∣∣∣∣∑
x∈Pi

fA′(x)

∣∣∣∣∣+ ∑
x∈Pi

fA′(x) ≥ α2

80
|Pi|

and so ∑
x∈Pi

fA′(x) ≥ α2

160
|Pi|.

Definition 2.25 (Bohr set). Let Γ ⊆ Ĝ and ρ > 0. By the Bohr set B(Γ, ρ) we mean the set

B(Γ, ρ) = {x ∈ G : |γ(x)− 1| < ρ ∀γ ∈ Γ}.

We call |Γ| the rank of B(Γ, ρ), and ρ its width or radius.

Example 2.26. When G = Fn
p , then B(Γ, ρ) = 〈Γ〉⊥ for all sufficiently small ρ.

Lemma 2.27. Assuming that:

• Γ ⊆ Ĝ of size d

• ρ > 0
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Then
|B(Γ, ρ)| ≥

(ρ
8

)d
|G|.

Proposition 2.28 (Bogolyubov in a general finite abelian group). Assuming that:

• A ⊆ G of density α > 0

Then there exists Γ ⊆ Ĝ of size at most 2α−2 such that A+A−A−A ⊇ B(Γ, ρ).

Proof. Recall 1A ∗ 1A ∗ 1−A ∗ 1−A(x) =
∑

γ∈Ĝ |1̂A(γ)|4γ(x).

Let Γ ∈ Spec√
α
2
(1A), and note that, for x ∈ B

(
Γ, 12

)
and γ ∈ Γ, Re(γ(x)) > 0. Hence, for x ∈

B
(
Γ, 12

)
,

Re
∑
γ∈Ĝ

|1̂A(γ)|4γ(x) = Re
∑
γ∈Γ

|1̂A(γ)|4γ(x)︸ ︷︷ ︸
≥α4

+Re
∑
γ /∈Γ

|1̂A(γ)|4γ(x)

and ∣∣∣∣∣∣Re
∑
γ /∈Γ

|1̂A(γ)|4γ(x)

∣∣∣∣∣∣ ≤ sup
γ /∈Γ

|1̂A(γ)|2
∑
γ /∈Γ

|1̂A(γ)|2 ≤
(√

α

2
· α
)2

· α =
α4

2
.
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3 Probabilistic Tools

All probability spaces in this course will be finite.

Theorem 3.1 (Khintchine’s inequality). Assuming that:

• p ∈ [2,∞)

• X1, X2, . . . , Xn independent random variables

• P(Xi = xi) =
1
2 = P(Xi = −xi)

Then ∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
Lp(P)

= O

p 1
2

(
n∑

i=1

‖Xi‖2L2(P)

) 1
2

 .

Proof. By nesting of norms, it suffices to prove the case p = 2k for some k ∈ N. Write X =
∑n

i=1Xi,
and assume

∑n
i=1 ‖Xi‖2L∞(P) = 1. Note that in fact

∑n
i=1 ‖Xi‖2L2(P) =

∑n
i=1 ‖Xi‖2L∞(P), hence∑n

i=1 ‖Xi‖2L2(P) = 1.Lecture 11

By Chernoff’s inequality (Example 2.5), for all θ > 0 we have

P(|X| ≥ θ) ≤ 4 exp

(
−θ

2

4

)
,

and so using the fact that P(|X| ≤ t) =
∫ t

0
ρX(s)ds we have

‖X‖2kL2k(P) =

∫ ∞

0

t2kρX(t)dt

=

∫ ∞

0

2kt2k−1P(|X| ≥ t)dt integration by parts

≤
∫ ∞

0

8kt2k−1 exp

(
− t

2

4

)
dt︸ ︷︷ ︸

=:I(K)

We shall show by induction on k that I(K) ≤ 22k (2k)k

4k . Indeed, when k = 1,∫ ∞

0

t exp

(
− t

2

4

)
dt =

[
−2 exp

(
− t

2

4

)]∞
0

= 2 ≤ 2.
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For k > 1, integrate by parts to find that

I(K) =

∫ ∞

0

t2k−2︸ ︷︷ ︸
u

· t exp
(
− t

2

4

)
︸ ︷︷ ︸

v

dt

=

[
t2k−2 ·

(
−2 exp

(
− t

2

4

))]∞
0

−
∫ ∞

0

(2k − 2)t2k−3

(
−2 exp

(
− t

2

4

))
dt

= 4(k − 1)

∫ ∞

0

t2(k−1)−1 exp

(
− t

2

4

)
dt

= 4(k − 1)I(K − 1)

≤ 4(k − 1)22(k−1) (2(k − 1))k−1

4(k − 1)

≤ 22k
(2k)k

4k

Corollary 3.2 (Rudin’s Inequality). Let F ⊆ F̂n
2 be a linearly independent set and let p ∈

[2,∞). Then f̂ ∈ l2(Γ), ∥∥∥∥∥∥
∑
γ∈Γ

f̂(γ)γ

∥∥∥∥∥∥
LP (Fn

2 )

= O(
√
p‖f̂‖l2(Γ)).

Corollary 3.3. Let Γ ⊆ F̂n
2 be a linearly independent set and let p ∈ (1, 2]. Then for all

f ∈ Lp(Fn
2 ),

‖f̂‖l2(Γ) = O

(√
p

p− 1
‖f‖Lp(Fn

2 )

)
.

Proof. Let f ∈ Lp(Fn
2 ) and write g =

∑
γ∈Γ f̂(γ)γ. Then

‖f̂‖2l2(Γ) =
∑
γ∈Γ

|f̂(γ)|2

= 〈f̂ , ĝ〉
l2(F̂n

2 )

= 〈f, g〉L2(Fn
2 )

by Plancherel’s identity

which is bounded above by ‖f‖Lp(Fn
2 )
‖g‖Lp′ (Fn

2 )
where 1

p + 1
p′ = 1, using Hölder’s inequality.

By Rudin’s inequality,

‖g‖Lp′ (Fn
2 )

= O
(√

p′‖ĝ‖l2(Γ)
)
= O

(√
p

p− 1
‖f̂‖l2(Γ)

)
.
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Recall that given A ⊆ Fn
2 of density α > 0, we had |Spec ρ(1A) ≤ ρ−2α−1. This is best possible as the

example of a subspace shows. However, in this case the large spectrum is highly structured.

Theorem 3.4 (Special case of Chang’s Theorem). Assuming that:

• A ⊆ Fn
2 of density α > 0

• ρ > 0

Then there exists H ≤ F̂n
2 of dimension O(ρ−2 logα−1) such that H ⊇ Spec ρ(1A).

Proof. Let Γ ⊆ Spec ρ(1A) be a maximal linearly independent set. Let H = 〈Spec ρ(1A)〉. Clearly
dim(H) = |Γ|. By Corollary 3.3, for all p ∈ (1, 2],

(ρα)2|Γ| ≤
∑
γ∈Γ

|1̂A(γ)|2 = ‖1̂A‖2l2(Γ) = O

(
p

p− 1
‖1A‖2Lp(Fn

2 )

)
,

so
|Γ| = O

(
ρ−2α−2α2/p p

p− 1

)
.

Set p = 1 + (logα−1)−1 to get |Γ| = O(ρ−2α−2(α2 · e2)(logα−1 + 1)).

Definition 3.5 (Dissociated). Let G be a finite abelian group. We say S ⊆ G is dissociated if∑
s∈S εss = 0 for ε ∈ {−1, 0, 1}|S|, then ε ≡ 0.

Clearly, if G = Fn
2 , then S ⊆ G is dissociated if and only if it is linearly independent.Lecture 12

Theorem 3.6 (Chang’s Theorem). Assuming that:

• G a finite abelian group

• A ⊆ G be of density α > 0

• Λ ⊇ Spec ρ(1A) is dissociated

Then |Λ| = O(ρ−2 logα−1.

We may bootstrap Khintchine’s inequality to obtain the following:

Theorem 3.7 (Marcinkiewicz-Zygmund). Assuming that:

• p ∈ [2,∞)

• X1, X2, . . . , Xn ∈ p(P) independent random variables

• E
∑n

i=1Xi = 0
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Then ∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
Lp(P)

= O

p 1
2

∥∥∥∥∥
n∑

i=1

|Xi|2
∥∥∥∥∥

1
2

Lp/2(P)

 .

Proof. First assume the distribution of the Xi’s is symmetric, i.e. P(Xi = a) = P(Xi = −a) for all
a ∈ R. Partition the probability space Ω into sets Ω1,Ω2, . . . ,ΩM , write Pj for the induced measure
on Ωj such that all Xi’s are symmetric and take at most 2 values. By Khintchine’s inequality, for each
j ∈ [M ], ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

Lp(Pj)

= O

pp/2( n∑
i=1

‖Xi‖2L2(Pj)

)p/2


= O

pp/2 ∥∥∥∥∥
n∑

i=1

|Xi|2
∥∥∥∥∥
p/2

Lp/2(Pj)


so summing over all j and taking p-th roots gives the symmetric case. Now suppose the Xi’s are arbi-
trary, and let Y1, . . . , Yn be such that Yi ∼ Xi and X1, X2, . . . , Xn, Y1, Y2, . . . , Yn are all independent.
Applying the symmetric case to Xi − Yi,∥∥∥∥∥

n∑
i=1

(Xi − Yi)

∥∥∥∥∥
Lp(P×P)

= O

p 1
2

∥∥∥∥∥
n∑

i=1

|Xi − Yi|2
∥∥∥∥∥

1
2

Lp/2(P×P)


= O

p 1
2

∥∥∥∥∥
n∑

i=1

|Xi − Yi|2
∥∥∥∥∥

1
2

Lp/2(P)


But then

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
Lp(P)

=

∥∥∥∥∥∥∥∥∥
n∑

i=1

Xi − EY
n∑

i=1

Yi︸ ︷︷ ︸
=0

∥∥∥∥∥∥∥∥∥
p

Lp(P)

= EX
∣∣∣∑Xi − EY

∑
Yi

∣∣∣p
= EX

∣∣∣EY
∑

(Xi − Yi)
∣∣∣p

≤ EXEY
∣∣∣∑(Xi − Yi)

∣∣∣p by Jensen say

=
∥∥∥∑(Xi − Yi)

∥∥∥p
Lp(P×P)

concluding the proof.
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Theorem 3.8 (Croot-Sisask almost periodicity). Assuming that:

• G a finite abelian group

• ε > 0

• p ∈ [2,∞)

• A,B ⊆ G are such that |A+B| ≤ K|A|

• f : G→ C

Then there exists b ∈ B and a set X ⊆ B − b such that |X| ≥ 2−1K−O(ε−2p)|B| and

‖τxf ∗ µA − f ∗ µA‖Lp(G) ≤ ε‖f‖Lp(G) ∀x ∈ X,

where τxg(y) = g(y+x) for all y ∈ G, and as a reminder, µA is the characteristic measure of A.

Proof. The main idea is to approximate

f ∗ µA(y) = Exf(y − x)µA(x) = Ex∈Af(y − x)

by 1
m

∑m
i=1 f(y−zi), where zi are sampled independently and uniformly from A, and m is to be chosen

later.

For each y ∈ G, define Zi(y) = τ−zif(y) − f ∗ µA(y). For each y ∈ G, these are independent random
variables with mean 0, so by Marcinkiewicz-Zygmund,∥∥∥∥∥

m∑
i=1

Zi(y)

∥∥∥∥∥
p

Lp(P)

= O

pp/2 ∥∥∥∥∥
m∑
i=1

|Zi(y)|2
∥∥∥∥∥
p/2

Lp/2(P)


= O

pp/2E(z1,...,zm)∈Am

∣∣∣∣∣
m∑
i=1

|Zi(y)|2
∣∣∣∣∣
p/2


By Hölder with 1
p′ +

2
p = 1, we get∣∣∣∣∣

m∑
i=1

|Zi(y)|2
∣∣∣∣∣
p/2

≤

(
m∑
i=1

1p
′

) 1
p′ ·

p
2
(

m∑
i=1

|Zi(y)|2·p/2
) 2

p ·
p
2

≤

(
m∑
i=1

1p
′

) p
2−1( m∑

i=1

|Zi(y)|2·p/2
) 2

p ·
p
2

= mp/2−1
m∑
i=1

|Zi(y)|p

so ∥∥∥∥∥
m∑
i=1

Zi(y)

∥∥∥∥∥
p

Lp(P)

= O

(
pp/2mp/2−1E(z1,...,zm)∈Am

m∑
i=1

|Zi(y)|p
)
.
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Summing over all y ∈ G, we have

Ey∈G

∥∥∥∥∥
m∑
i=1

Zi(y)

∥∥∥∥∥
p

Lp(P)

= O

(
pp/2mp/2−1E(z1,...,zm)∈Am

m∑
i=1

Ey∈G|Zi(y)|p
)

with

(Ey∈G|Zi(y)|p)
1
p = ‖Zi‖Lp(G)

= ‖τ−zif − f ∗ µA‖Lp(G)

≤, ‖τ−zif‖Lp(G) + ‖f ∗ µA‖Lp(G)

≤ ‖f‖Lp(G) + ‖f‖Lq(G)‖µA‖L1(G)

≤ 2‖f‖Lp(G)

by Young / Hölder (‖f ∗ g‖Lr(G) ≤ ‖f‖Lp(G)‖g‖Lq(G) where 1 + 1
r = 1

p + 1
q ).Lecture 13

So we have

E(z1,...,zm)∈AmEy∈G

∣∣∣∣∣
m∑
i=1

Zi(y)

∣∣∣∣∣
p

= O

(
pp/2mp/2−1

m∑
i=1

(2‖f‖Lp(G))
p

)
= O((4p)p/2mp/2‖f‖pLp(G)).

Choose m = O(ε−2p) so that the RHS is at most ( ε4‖f‖Lp(G))
p. whence

E(z1,...,zm)∈Am Ey∈G

∣∣∣∣∣ 1m
m∑
i=1

τ−zif(y)− f ∗ µA(y)

∣∣∣∣∣
p

︸ ︷︷ ︸
=(∗)

= O((4p)p/2mp/2‖f‖pLp(G)) =
(ε
4
‖f‖Lp(G)

)p
.

Write
L =

{
z = (z1, . . . , zm) ∈ Am : (∗) ≤

(ε
2
‖f‖Lp(G)

)p}
.

By Markov inequality, since

E(∗) ≤
(ε
4
‖f‖Lp(G)

)p
= 2−p

(ε
2
‖f‖Lp(G)

)p
,

we have
|Am \ L|
|Am|

= P
(
(∗) ≥

(ε
2
‖f‖Lp(G)

)p)
≤ P((∗) ≥ 2pE(∗)) ≤ 2−p

so |L| ≥
(
1− 1

2p

)
|A|m ≥ 1

2 |A|
m. Let

D = {(b, b, . . . , b)︸ ︷︷ ︸
m

: b ∈ B}.

Now L+D ⊆ (A+B)m, whence

|L+D| ≤ |A+B|m ≤ Km|A|m ≤ 2Km|L|.

31



By Lemma 1.17,

E(L,D) ≥ |L|2|D|2

|L+D|
≥ 1

2
K−m|D|2|L|

so there are at least |D|2
2Km pairs (d1, d2) ∈ D × D such that rL−L(d2 − d1) > 0. In particular, there

exists b ∈ ub and X ⊆ B − b of size |X| ≥ |D|
2Km = |B|

2Km such that for all x ∈ X, there exists l2(x) ∈ L
such that for all i ∈ [m], l1(x)i − l2(x)i = x. But then for each x ∈ X, by the triangle inequality,

‖τ−xf ∗ µA − f ∗ µA‖Lp(G) ≤

∥∥∥∥∥τ−xf ∗ µA − τ−x

(
1

m

m∑
i=1

τ−l2(x)if

)∥∥∥∥∥
Lp(G)

+

∥∥∥∥∥τ−x

(
1

m

m∑
i=1

τ−l2(xi)f

)
− f ∗ µA

∥∥∥∥∥
Lp(G)

=

∥∥∥∥∥f ∗ µA − 1

m

m∑
i=1

τ−l2(x)if

∥∥∥∥∥
Lp(G)

+

∥∥∥∥∥ 1

m

m∑
i=1

τ−x−l2(x)if − f ∗ µA

∥∥∥∥∥
Lp(G)

≤ 2 · ε
2
‖f‖Lp(G)

by definion of L.

Theorem 3.9 (Bogolyubov again, after Sanders). Assuming that:

• A ⊆ Fn
p of density α > 0

Then there exists a subspace V ≤ Fn
p of codimension O(log4 α−1) such tht V ⊆ A+A−A−A.

Almost periodicity is also a key ingredient in recent work of Kelley and Meka, showing that any
A ⊆ [N ] containing no non-trivial 3 term arithmetic progressions has size |A| ≤ exp(−C log

1
11 N)N .
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4 Further Topics

In Fn
p , we can do much better.

Theorem 4.1 (Ellenberg-Gijswijt, following Croot-Lev-Pach). Assuming that:

• A ⊆ Fn
3 contains no non-trivial 3 term arithmetic progressions

Then |A| = o(2.756)n.

Notation. Let Mn be the set of monomials in x1, . . . , x2 whose degree in each variable is at
most 2. Let Vn be the vector space over F3 whose basis is Mn. For any d ∈ [0, 2n], write Md

n

for the set of monomials in Mn of (total) degree at most d, and V d
n for the corresponding vector

space. Set md = dim(V d
n ) = |Md

n|.

Lemma 4.2. Assuming that:

• A ⊆ Fn
3

• P ∈ V d
n is a polynomial

• P (a+ a′) = 0 for all a 6= a′ ∈ A

Then
|{a ∈ A : P (2a) 6= 0}| ≤ 2md/2.

Lecture 14

Proof. Every P ∈ V d
n can be written as a linear combination of monomials in Md

n, so

P (x+ y) =
∑

m,m′∈Md
n

deg(mm′)≤d

cm,m′m(x)m′(y)

for some coefficients cm,m′ . Clearly at least one of m,m′ must have degree ≤ d
2 , whence

P (x+ y) =
∑

m∈M
d/2
n

m(x)Fm(y) +
∑

m′∈M
d/2
n

m′(y)Gm′(x),

for some families of polynomials (Fm)
m∈M

d/2
n

, (Gm′)
m′∈M

d/2
n

.

Viewing (P (x+ y))x,y∈A as a |A| × |A|-matrix C, we see that C can be written as the sum of at most
2md/2 matrices, each of which has rank 1. Thus rank(C) ≤ 2md/2. But by assumption, C is a diagonal
matrix whose rank equals |{a ∈ A : P (a+ a) 6= 0}|.
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Proposition 4.3. Assuming that:

• A ⊆ Fn
3 a set containing no non-trivial 3 term arithmetic progressions

Then |A| ≤ 3m2n/3.

Proof. Let d ∈ [0, 2n] be an integer to be determined later. Let W be the space of polynomials in V d
n

that vanish on (2 ·A)c. We have

dim(W ) ≥ dim(V d
n)− |(2 ·A)c| = md − (3n − |A|).

We claim that there exists P ∈W such that | supp(P )| ≥ dim(W ). Indeed, pick P ∈W with maximal
support. If | supp(P )| < dim(W ), then there would be a non-zero polynomial Q ∈ W vanishing on
supp(P ), in which case supp(P +Q) ) supp(P ), contradicting the choice of P .

Now by assumption,
{a+ a′ : a 6= a′ ∈ A} ∩ 2 ·A = ∅.

So any polynomial that vanishes on (2 ·A)c vanishes on {a+ a′ : a 6= a′ ∈ A}. By Lemma 4.2 we now
have that,

|A| − (3n −md) = md − (3n − |A|)
≤ dim(W )

≤ | supp(P )|
= |{x ∈ Fn

3 : P (x) 6= 0}|
= |{a ∈ A : P (2a) 6= 0}|
≤ 2md/2

Hence |A| ≥ 3n − md + 2md/2. But the monomials in Mn \Md
n are in bijection with the ones in

M2n−d via xα1
1 · · ·xαn

n 7→ x2−α1
1 · · ·x2−αn

n , whence 3n −md = m2n−d. Thus setting d = 4n
3 , we have

|A| ≤ m2n/3 + 2m2n/3 = 3m2n/3.

You will prove Theorem 4.1 on Example Sheet 3.
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We do not have at present a comparable bound for 4 term arithmetic progressions. Fourier techniques
also fail.

Example 4.4. Recall from Lemma 2.18 that given A ⊆ G,

|T 3(1A,1A,1A)− α3| ≥ sup
γ 6=1

|1̂A(γ)|.

But it is impossible to bound

T 4(1A,1A,1A,1A)− α4 = Ex∈d1A(x)1A(x+ d)1A(x+ 2d)1A(x+ 3d)− α4

by supγ 6=1 |1̂A(γ)|. Indeed, consider Q = {x ∈ Fn
p : x · x = 0}. By Problem 11(ii) on Sheet 1,

|Q|
pn

=
1

p
+O(p−n/2)

and
sup
t6=0

|1̂Q(t)| = O(p−n/2).

But given a 3 term arithmetic progression x, x+ d, x+ 2d ∈ Q, by the identity

x2 − 3(x+ d)2 + 3(x+ 2d)2 − (x+ 3d)2 = 0 ∀x, d,

x+ 3d automatically lies in Q, so

T 4(1A,1A,1A,1A) = T 3(1A,1A,1A) =

(
1

p

)3

+O(p−n/2)

which is not close to
(

1
p

)4
.

Definition 4.5. Given f : G→ C, define its U2-norm by the formula

‖f‖4U2(G) = Ex,a,b∈Gf(x)f(x+ a)f(x+ b)f(x+ a+ b).

Problem 1(i) on Sheet 2 showed that ‖f‖U2(G) = ‖f̂‖l4(Ĝ), so this is indeed a norm.

Problem 1(ii) asserted the following:

Lemma 4.6. Assuming that:

• f1, f2, f3 : G→ C

Then
|T 3(f1, f2, f3)| ≤ min

i∈[3]
‖fi‖U2(G) ·

∏
j 6=i

‖fj‖L∞(G).
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Note that
sup
γ∈Ĝ

|f̂(γ)|4 ≤
∑
γ∈Ĝ

|f̂(γ)|4 ≤ sup
γ∈Ĝ

|f̂(γ)|2
∑
γ∈Ĝ

|f̂(γ)|2

and thus by Parseval’s identity,

‖f‖4U2(G) = ‖f̂‖4
l∞(Ĝ)

≤ ‖f̂‖2
l∞(Ĝ)

‖f‖2L2(G).

Lecture 15

Hence
‖f̂‖l∞(Ĝ) ≤ ‖f̂‖l4(Ĝ) = ‖f‖U2(G) ≤ ‖f̂‖

1
2

l∞(Ĝ)
‖f‖

1
2

L2(G).

Moreover, if f = fAA = 1A − α, then

T 3(f, f, f) = T 3(1A − α,1A − α,1A − α) = T 3(1A,1A,1A)− α3.

We may therefore reformulate the first step in the proof of Meshulam’s Theorem as follows: if pn ≥
2α−2, then by Section 4,

α3

2
≤
∣∣∣∣ αpn − α3

∣∣∣∣ = |T 3(fAA, fAA, fAA)| ≤ ‖fAA‖U2(Fn
p )
.

It remains to show that if ‖fAA‖U2(Fn
p )

is non-trivial, then there exists a subspace V ≤ Fn
p of bounded

codimension on which A has increased density.

Theorem 4.7 (U2 Inverse Theorem). Assuming that:

• f : Fn
p → C

• ‖f‖L∞(Fn
p )

≤ 1

• δ > 1

• ‖f‖U2(Fn
p )

≥ δ

Then there exists b ∈ Fn
p such that

|Ex∈Fn
p
f(x)e(−x · b/p)| ≥ δ2.

In other words, |〈f, φ〉| ≥ δ2 for φ(x) = e(−x · b/p) and we say “f correlates with a linear phase
function”.

Proof. We have seen that

‖f‖2U2(Fn
p )

≤ ‖f̂‖
l∞(F̂n

p )
‖f‖L2(Fn

p )
≤ ‖f̂‖

l∞(F̂n
p )
,

so
δ2 ≤ ‖f̂‖

l∞(F̂n
p )

= sup
t∈F̂n

p

|Exf(x)e(−x · t/p)|.
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Definition 4.8 (U3 norm). Given f : G→ C, define its U3 norm by

‖f‖8U3(G) := E∈x,a,b,cf(x)f(x+ a)f(x+ b)f(x+ c)

f(x+ a+ b)f(x+ b+ c)f(x+ a+ c)f(x+ a+ b+ c)

= Ex,h1,h2,h3∈G

∏
ε∈{0,1}3

C|ε|f(x+ ε · h)

where Cg(x) = g(x) and |ε| denotes the number of ones in ε.

It is easy to verify that Ec∈G‖∆cf‖4U2(G) where ∆cg(x) = g(x)g(x+ c).

Definition 4.9 (U3 inner product). Given functions fε : G → C for ε ∈ {0, 1}3, define their
U3 inner product by

〈(fε)ε∈{0,1}3〉U3(G) = Ex,h1,h2,h3∈G

∏
ε∈{0,1}3

C|ε|fε(x+ ε · h).

Observe that 〈f, f, f, f, f, f, f, f〉U3(G) = ‖f‖U3(G)
8.

Lemma 4.10 (Gowers–Cauchy–Schwarz Inequality). Assuming that:

• fε : G→ C, ε ∈ {0, 1}3

Then
|〈(fε)ε∈{0,1}3〉U3(G) ≤

∏
ε∈{0,1}3

‖fε‖U3(G).

Setting fε = f for ε ∈ {0, 1}2 × {0} and fε = 1 otherwise, it follows that ‖f‖4U2(G) ≤ ‖f‖U3(G)
4 hence

‖f‖U2(G) ≤ ‖f‖U3(G).
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Proposition 4.11. Assuming that:

• f1, f2, f3, f4 : Fn
5 → C

Then
T 4(f1, f2, f3, f4) ≤ min

i∈[4]
‖fi‖U3(G)

∏
j 6=i

‖fj‖L∞(Fn
5 )
.

Proof. We additionally assume f = f1 = f2 = f3 = f4 to make the proof easier to follow, but the
same ideas are used for the general case. We additionally assume ‖f‖L∞(Fn

5 )
≤ 1, by rescaling, since

the inequality is homogeneous.

Reparametrising, we have

T 4(f, f, f, f) = Ea,b,c,d∈Fn
5
f(3a+ 2b+ c)f(2a+ b− d)f(a− c− 2d)f(−b− 2c− 3d)

|T 4(f, f, f, f)|8 ≤
(
Ea,b,c|Edf(2a+ b− d)f(a− c− 2d)f(−b− 2c− 3d)|2

)4
=
(
Ed,d′Ea,bf(2a+ b+ d)f(2a+ b− d′)

Ecf(a− c− 2d)f(a− c− 2d′)f(−b− 2c− 3d)f(−b− 2c− 3d′)
)4

≤
(
Ed,d′Ea,b|Ecf(a− c− 2d)f(a− c− 2d′)f(−b− 2c− 3d)f(−b− 2c− 3d′)|2

)2
=
(
Ec,c′,d,d′Eaf(a− c− 2d)f(a− c′ − 2d)f(a− c− 2d′)f(a− c′ − 2d′)

Ebf(−b− 2c− 3d)f(−b− 2c′ − 3d)f(−b− 2c− 3d′)f(−b− 2c′ − 3d′)
)2

≤ Ec,c′,d,d′,a|Ebf(−b− 2c− 3d)f(−b− 2c′ − 3d)f(−b− 2c− 3d′)f(−b− 2c′ − 3d′)|2

= Eb,b′,c,c′,d,d′f(−b− 2c− 3d)f(−b′ − 2c− 3d)f(−b− 2c′ − 3d)f(−b′ − 2c′ − 3d)

f(−b− 2c− 3d′)f(−b′ − 2c− 3d′)f(−b− 2c′ − 3d′)f(−b′ − 2c′ − 3d′)

Lecture 16

Theorem 4.12 (Szemerédi’s Theorem for 4-APs). Assuming that:

• A ⊆ Fn
5 a set containing no non-trivial 4 term arithmetic progressions

Then |A| = o(5n).

Idea: By Proposition 4.11 with f = fA = 1A − α,

T 4( 1A︸︷︷︸
fA+α

, 1A︸︷︷︸
fA+α

, 1A︸︷︷︸
fA+α

, 1A︸︷︷︸
fA+α

)− α4 = T 4(fA, fA, fA, fA) + · · ·

where · · · consists of 14 other terms in which between one and three of the inputs are equal to fA.
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These are controlled by
‖fA‖U2(Fn

5 )
≤ ‖fA‖U3(G),

whence
|T 4(1A,1A,1A,1A)− α4| ≤ 15‖fA‖U3(G).

So if A contains no non-trivial 4 term arithmetic progressions and 5n > 2α−3, then ‖fA‖U3(G) ≥ α4

30 .

What can we say about functions with large U3 norm?

Example 4.13. Let M be an n × n symmetric matrix with entries in F5. Then f(x) =
e(x>Mx/5) satisfies ‖f‖U3(G) = 1.

Theorem 4.14 (U3 inverse theorem). Assuming that:

• f : Fn
5 → C

• ‖f‖L∞(Fn
5 )

≤ 1

• ‖f‖U3(G) ≥ δ for some δ > 0

Then there exists a symmetric n× n matrix M with entries in F5 and b ∈ Fn
5 such that

|Exf(x)e((x
>Mx+ b>x)/p)| ≥ c(δ)

where c(δ) is a polynomial in δ. In other words, |〈f, φ〉| ≥ c(δ) for φ(x) = e((x>Mx+ b>x)/p)
and we say “f correlates with a quadratic phase function”.

Proof (sketch). Let ∆hf(x) denote f(x)f(x+ h).

‖f‖U3(G) = (Eh‖∆hf‖4U2)
1
8 .

STEP 1: Weak linearity. See reference.

STEP 2: Strong linearity. We will spend the rest of the lecture discussing this in detail.

STEP 3: Symmetry argument. Problem 8 on Sheet 3.

STEP 4: Integration step. Problem 9 on Sheet 3.

STEP 1: If ‖f‖U3(G)
8 = Eh‖∆h‖4U2 ≥ δ8, then for at least a δ8

2 -proportion of h ∈ Fn
5 , δ8

2 ≤ ‖∆hf‖4U2 ≤
‖∆̂hf‖2l∞ . So for each such h ∈ Fn

5 , there exists th such that |∆̂hf(th)|2 ≥ δ8

2 .

Proposition 4.15. Assuming that:

• f : Fn
5 → C
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• ‖f‖∞ ≤ 1

• ‖f‖U3(G) ≥ δ

• |Fn
5 | = Ωδ(1)

Then there exists S ⊆ Fn
5 with |S| = Ωδ(|Fn

5 |) and a function φ : S → F̂n
5 such that

(i) |∆̂hf(φ(h))| = Ωδ(1);

(ii) There are at least Ωδ(|Fn
5 |3) quadruples (s1, s2, s3, s4) ∈ S4 such that s1 + s2 = s3 + s4

and φ(s1) + φ(s2) + φ(s4).

STEP 2: If S and φ are as above, then there is a linear function ψ : Fn
5 → F̂n

5 which coincides with φ
for many elements of S.

Proposition 4.16. Assuming that:

• S and φ given as in Proposition 4.15

Then there exists n × n matrix M with entries in F5 and b ∈ Fn
5 such that ψ(x) = Mx + b

(ψ : Fn
5 → F̂n

5 ) satisfies ψ(x) = φ(x) for Ωδ(|Fn
5 |) elements x ∈ S.

Proof. Consider the graph of φ, Γ = {(h, φ(h)) : h ∈ S} ⊆ Fn
5 × F̂n

5 . By Proposition 4.15, Γ has
Ωδ(|Fn

5 |3) additive quadruples.

By Balog–Szemeredi–Gowers, Schoen, there exists Γ′ ⊆ Γ with |Γ′| = Ωδ(|Γ|) = Ωδ(|Fn
5 |) and |Γ′+Γ′| =

Oδ(|Γ′|). udefine S′ ⊆ S by Γ′ = {(h, φ(h)) : h ∈ S′} and note |S′| = Ωδ(|Fn
5 |).

By Freiman-Ruzsa applied to Γ′ ⊆ Fn
5 × F̂n

5 , there exists a subspace H ≤ Fn
5 × F̂n

5 with |H| = Oδ(|Γ′|) =
Oδ(|Fn

5 |) such that Γ′ ⊆ H.

Denote by π : Fn
5 × F̂n

5 → Fn
5 the projection onto the first n coordinates. By construction, π(H) ⊇ S′.

Moreover, since |S′| = Ωδ(|Fn
5 |),

| ker(π|H)| = |H|
| Im(π|H)|

=
Oδ(|Fn

5 |)
|S′|

= Oδ(1).

We may thus partition H into Oδ(1) cosets of some subspace H∗ such that π|H is injective on each
coset. By averaging, there exists a coset x+H∗ such that

|Γ′ ∩ (x+H∗)| = Ωδ(|Γ′|) = Ωδ(|Fn
5 |).

Set Γ′′ = Γ′ ∩ (x+H∗), and define S′′ accordingly.

Now π|x+∗ is injective and surjective onto V := Im(π|x+H∗). This means there is an affine linear map
ψ : V → F̂n

5 such that (h, ψ(h)) ∈ Γ′′ for all h ∈ S′′.
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Then do steps 3 and 4.
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ip 37
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Parseval’s identity 15, 16, 18, 20, 36
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r 16, 31
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rd 3, 4
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