Introduction to Additive Combinatorics

Daniel Naylor

December 3, 2024

Contents

Lecture 1

1 Combinatorial methods

Definition 1.1 (Sumset). Let G be an abelian group. Given $A, B \subseteq G$, define the *sumset* $A + B$ to be

$$
A + B := \{a + b : a \in A, b \in B\}
$$

and the *difference set* A − B to be

$$
A - B := \{a + b : a \in A, b \in B\}.
$$

If A and B are finite, then certainly

$$
\max\{|A|, |B|\} \le |A + B| \le |A||B|.
$$

Example 1.2. Let $A = [n] := \{1, 2, ..., n\} \subseteq \mathbb{Z}$. Then

$$
|A + A| = |\{2, \ldots, 2n\}| = 2n - 1 = 2|A| - 1.
$$

Lemma 1.3. Assuming that:

• $A \subseteq \mathbb{Z}$ is finite.

Then $|A + A| \ge 2|A| - 1$ $|A + A| \ge 2|A| - 1$ $|A + A| \ge 2|A| - 1$, with equality if and only if A is an arithmetic progression.

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ with $a_1 < a_2 < ... < a_n$. Then

$$
a_1 + a_1 < a_1 + a_2 < a_1 + a_2 < \dots < a_1 + a_n < a_2 + a_n < \dots < a_n + a_n
$$

so $|A + A| \geq 2|A| - 1$ $|A + A| \geq 2|A| - 1$ $|A + A| \geq 2|A| - 1$. But we could also have written

$$
a_1 + a_1 < a_1 + a_2 < a_2 + a_2 < a_2 + a_3 < a_2 + a_4 < \dots < a_2 + a_n < a_3 + a_n < \dots < a_n + a_n.
$$

When $|A + A| = 2|A| - 1$ $|A + A| = 2|A| - 1$ $|A + A| = 2|A| - 1$, these two orderings must be the same. So $a_2 + a_i = a_1 + a_{i+1}$ for all $i = 2, \ldots, n - 1.$ \Box

Exercise: If $A, B \subseteq \mathbb{Z}$, then $|A + B| \geq |A| + |B| - 1$ $|A + B| \geq |A| + |B| - 1$ $|A + B| \geq |A| + |B| - 1$ with equality if and only if A and B are arithmetic progressions with the same common difference.

Example 1.4. Let $A, B \subseteq \mathbb{Z}/p\mathbb{Z}$ with p prime. Then $|A + B| \geq p + 1 \implies A + B = \mathbb{Z}/p\mathbb{Z}$ $|A + B| \geq p + 1 \implies A + B = \mathbb{Z}/p\mathbb{Z}$ $|A + B| \geq p + 1 \implies A + B = \mathbb{Z}/p\mathbb{Z}$. Indeed, $g \in A + B \iff A \cap (g - B) \neq \emptyset$ $g \in A + B \iff A \cap (g - B) \neq \emptyset$ $g \in A + B \iff A \cap (g - B) \neq \emptyset$ (note that $g - B$ means $\{g\} - B$). But $\forall g \in \mathbb{Z}/p\mathbb{Z}$,

$$
|A \cap (g - B)| = |A| + |g - B| - |A \cup (g - B)| \ge |A| + |B| - p \ge 1.
$$

Theorem 1.5 (Cauchy-Davenport)**.** Assuming that:

• p is a prime

• $A, B \subseteq \mathbb{Z}/p\mathbb{Z}$ nonempty

Then

$$
|A + B| \ge \min\{p, |A| + |B| - 1\}.
$$

Proof. Assume $|A|+|B| \leq p+1$. Without loss of generality assume that $1 \leq |A| \leq |B|$ and that $0 \in A$. Apply induction on |A|. The case $|A| = 1$ is trivial. Suppose $|A| \geq 2$, and let $0 \neq a \in A$.

Since $\{a, 2a, 3a, \ldots, (p-1)a, pa\} = \mathbb{Z}/p\mathbb{Z}$ and $|A| + |B| \leq p+1$, there must exist $m \geq 0$ such that $ma \in B$ but $(m+1)a \notin B$. Let $B' = B - ma$, so $0 \in B'$, $a \notin B'$, $|B'| = |B|$.

But $1 \leq |A \cap B'| < |A|$, so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$. Since

$$
(A \cap B') + (A \cup B') \subseteq A + B',
$$

we have

$$
|A + B| = |A + B'| \ge |(A \cap B') + (A \cup B')| \ge |A \cap B'| + |A \cup B'| + 1 = |A| + |B| + 1.
$$

This fails for general abelian groups (or even general cyclic groups).

Example 1.6. Let p be (fixed, small) prime, and let $V \leq \mathbb{F}_p^n$ be a subspace. Then $V + V = V$, so $|V + V| = |V|$. In fact, if $A \subseteq \mathbb{F}_p^n$ is such that $|A + A| = |A|$, then A must be a coset of a subspace.

Example 1.7. Let $A \subseteq \mathbb{F}_p^n$ be such that $|A + A| < \frac{3}{2}|A|$ $|A + A| < \frac{3}{2}|A|$ $|A + A| < \frac{3}{2}|A|$. Then there exists $V \leq \mathbb{F}_p^n$ a subspace such that $|V| < \frac{3}{2}|A|$ and A is contained in a coset of V. See Example Sheet 1.

Definition 1.8 (Ruzsa distance). Given finite sets $A, B \subseteq G$, we define the *Ruzsa distance* $d(A, B)$ between A and B by

$$
d(A, B) = \log \frac{|A - B|}{\sqrt{|A||B|}}
$$

Lecture 2

Note that this is symmetric, but is not necessarily non-negative, so we cannot prove that it is a metric. It does, however, satisfy triangle inequality:

Lemma 1.9 (Ruzsa's triangle inequality)**.** Assuming that:

• $A, B, C \subseteq G$ finite

Then

$$
d(A, C) \le d(A, B) + d(B, C).
$$

Proof. Observe that

$$
|B| \cdot |A - C| \le |A - B| \cdot |B - C|.
$$

Indeed, writing each $d \in A - C$ as $d = a_d - c_d$ with $a_d \in A$, $c_d \in C$, the map

$$
\phi: B \times (A - C) \to (A - B) \times (B - C)
$$

$$
(b, d) \mapsto (a_d - b, b - c_d)
$$

is injective. The triangle inequality now follows from the definition.

 \Box

Definition 1.10 (Doubling / difference constant). Given a finite $A \subseteq G$, we write

$$
\sigma(A):=\frac{|A+A|}{|A|}
$$

for the *doubling constant* of A and

$$
\delta(A) := \frac{|A - A|}{|A|}
$$

for the *difference constant* of A.

Then [Lemma 1.9](#page-2-1) shows, for example, that

$$
\log \delta(A) = d(A, A) \le d(A, -A) + d(-A, A) = 2 \log \sigma(A).
$$

So $\delta(A) \le \sigma(A)^2$, or $|A - A| \le \frac{|A + A|^2}{|A|}$ $|A - A| \le \frac{|A + A|^2}{|A|}$ $|A - A| \le \frac{|A + A|^2}{|A|}$ $\frac{|+A|^{-}}{|A|}$.

Notation. Given $A \subseteq G$ and $l, m \in \mathbb{N}_0$, we write

$$
lA - mA := \underbrace{A + A + \cdots + A}_{l \text{ times}} - \underbrace{A - A - \cdots - A}_{m \text{ times}}.
$$

Theorem 1.11 (Plúnnecke's Inequality)**.** Assuming that:

- $A, B \subseteq G$ are finite sets
- $|A + B| \le K|A|$ $|A + B| \le K|A|$ $|A + B| \le K|A|$ for some $K \ge 1$

Then $\forall l, m \in \mathbb{N}_0$,

$$
|lB - mB| \le K^{l+m}|A|.
$$

Proof. Choose a non-empty subset $A' \subseteq A$ such that the ratio $\frac{|A'+B|}{|A'|}$ $\frac{|A'+B|}{|A'|}$ $\frac{|A'+B|}{|A'|}$ $\frac{|\mathbf{A}^T + \mathbf{B}|}{|\mathbf{A}^T|}$ is minimised, and call this ratio K'. Then $|A' + B| = K'|A'|$ $|A' + B| = K'|A'|$ $|A' + B| = K'|A'|$, $K' \le K$, and $\forall A'' \subseteq A$, $|A'' + B| \ge K'|A''|$.

Claim: For every finite $C \subseteq G$, $|A' + B + C| \le K'|A' + C|$ $|A' + B + C| \le K'|A' + C|$ $|A' + B + C| \le K'|A' + C|$.

Let's complete the proof of the theorem assuming the claim. We first show that $\forall m \in \mathbb{N}_0$, $|A' + mB| \leq$ $|A' + mB| \leq$ $|A' + mB| \leq$ $K^{\prime m}|A'|$. Indeed, the case $m = 0$ is trivial, and $m = 1$ is true by assumption. Suppose $m > 1$ and the inequality holds for $m - 1$. By the claim with $C = (m - 1)B$, we get

$$
|A' + mB| = |A' + B + (m - 1)B| \le K'|A' + (m - 1)B| \le K'^m|A'|.
$$

But as in the proof of [Ruzsa's triangle inequality,](#page-2-1) $\forall l, m \in \mathbb{N}_0$, we can show

$$
|A'||B - mB| \le |A' + lB||A' + mB| \le K'^l |A'|K'^m |A'| = K'^{l+m}|A'|^2.
$$

Hence $|lB - mB| \leq K^{l+m} |A'| \leq K^{l+m} |A|$ $|lB - mB| \leq K^{l+m} |A'| \leq K^{l+m} |A|$ $|lB - mB| \leq K^{l+m} |A'| \leq K^{l+m} |A|$, which completes the proof (assuming the claim).

We now prove the claim by induction on $|C|$. When $|C| = 1$ the statement follows from the assumptions. Suppose the claim is true for C, and consider $C' = C \cup \{x\}$ for some $x \notin C$. Observe that

$$
A' + B + C' = (A' + B + C) + ((A' + B + x) \setminus (D + B + x))
$$

with $D = \{a \in A' : a + B + x \subseteq A' + B + X\}.$ $D = \{a \in A' : a + B + x \subseteq A' + B + X\}.$ $D = \{a \in A' : a + B + x \subseteq A' + B + X\}.$

By definition of K' , $|D + B| \ge K'|D|$ $|D + B| \ge K'|D|$ $|D + B| \ge K'|D|$, so

$$
|A' + B + C'| \le |A' + B + C| + |A' + B + x| - |D + B + x|
$$

\n
$$
\le K'|A' + C| + K'|A'| - K'|D|
$$

\n
$$
= K'(|A' + C| + |A'| - |D|)
$$

We apply this argument a second time, writing

$$
A' + C' = (A' + C) \sqcup ((A' + x) \setminus (E + x))
$$

where $E = \{a \in A': a + x \in A' + C\} \subseteq D$ $E = \{a \in A': a + x \in A' + C\} \subseteq D$ $E = \{a \in A': a + x \in A' + C\} \subseteq D$. We conclude that

$$
|A' + C'| = |A' + C| + |A' + x| - |E + x| \ge |A' + C| + |A'| - |D|
$$

so

$$
|A' + B + C'| \le K'(|A' + C| + |A'| - |D|) \le K'|A' + C'|,
$$

proving the claim.

We are now in a position to generalise [Example 1.7.](#page-2-2)

Theorem 1.12 (Freiman-Ruzsa)**.** Assuming that:

• $A \subseteq \mathbb{F}_p^n$

 \Box

• $|A + A| \leq K |A|$ (i.e. $\sigma(A) \leq K$)

Then A is contained in a subspace $H \leq \mathbb{F}_p^n$ of size $|H| \leq K^2 p^{K^4} |A|$.

Lecture 3

Proof. Choose $X \subseteq 2A-A$ maximal such that the translates $x+A$ $x+A$ $x+A$ with $x \in X$ are disjoint. Such a set X cannot be too large: $\forall x \in X$, $x + A \subseteq 3A - A$ $x + A \subseteq 3A - A$ $x + A \subseteq 3A - A$, so by [Plúnnecke's Inequality,](#page-3-2) since $|3A - A| \le K^4 |A|$,

$$
|X||A| = \left| \bigcup_{x \in X} (x + A) \right| \le |3A - A|.
$$

So $|X| \leq K^4$. We next show

$$
2A - A \subseteq X + A - A. \tag{*}
$$

Indeed, if $y \in 2A - A$ and $y \notin X$, then by maximality of $X, y + A \cap x + A \neq \emptyset$ $X, y + A \cap x + A \neq \emptyset$ $X, y + A \cap x + A \neq \emptyset$ for some $x \in X$ (and if $y \in X$, then clearly $y \in X + A - A$ $y \in X + A - A$ $y \in X + A - A$).

It follows from $(*)$ by induction that $\forall l \geq 2$,

$$
lA - A \subseteq (l-1)X + A - A,\tag{**}
$$

since

$$
lA-A=A+\underbrace{(l-1)A-A}_{\subseteq (l-2)X+A-A}\subseteq (l-2)X+\underbrace{2A-A}_{\subseteq X}\subseteq X+A-A\subseteq (l-1)X+A-A.
$$

Now let $H \leq \mathbb{F}_p^n$ be the subgroup generated by A, which we can write as

$$
H = \bigcup_{l \ge 1} (lA - A) \stackrel{(**)}{\subseteq} Y + A - A
$$

where $Y \leq \mathbb{F}_p^n$ is the subgroup generated by X.

But every element of Y can be written as a sum of $|X|$ elements of X with coefficients amongst $0, 1, \ldots, p-1$, hence $|Y| \leq p^{|X|} \leq p^{K^4}$. To conclude, note that

$$
|U| \le |Y||A - A| \le p^{K^4} \le p^{K^4} K^2 |A|,
$$

where we use [Plúnnecke's Inequality](#page-3-2) or even [Ruzsa's triangle inequality.](#page-2-1)

 \Box

Example 1.13. Let $A = V \cup R$ where $V \leq \mathbb{F}_p^n$ is a subspace of dimension $K \ll d \ll n - K$ and R consists of $K - 1$ linearly independent vectors not in V. Then

$$
|A| = |V \cup R| = |V| + |R| = p^{n/k} + K - 1 \sim p^{n/k} = |V|
$$

and

$$
|A + A| = |(V \cup R) + (V \cup R)| = |V \cup (V + R) \cup (R + R)| \sim K|V|.
$$

But any subspace $K \leq \mathbb{F}_p^n$ containing A must have size at least $p^{n/K + (K-1)} \sim |V| \cdot p^K$, so the exponential dependence on K is necessary.

Theorem 1.14 (Polynomial Freiman-Ruzsa, due to Gowers–Green–Manners–Tao 2024)**.** Assuming that:

- $A \subseteq \mathbb{F}_p^n$
- $|A + A| \le K|A|$

Then there exists a subspace $K \leq \mathbb{F}_p^n$ of size at most $C_1(K)|A|$ such that for some $x \in \mathbb{F}_p^n$,

$$
|A \cap (x + K)| \ge \frac{|A|}{C_2(K)},
$$

where $C_1(K)$ and $C_2(K)$ are polynomial in K.

Proof. Omitted, because the techniques are not relevant to other parts of the course. See Entropy Methods in Combinatorics next term. \Box

Definition 1.15. Given $A, B \subseteq G$ we define the *additive energy* between A and B to be

$$
E(A, B) = |\{(a, a', b, b') \in A \times A \times B \times B : a + b = a' + b'\}|.
$$

We refer to the quadruples (a, a', b, b') such that $a + b = a' + b'$ as *additive quadruples*.

[E](#page-6-0)xample 1.16. Let $V \leq \mathbb{F}_p^n$ be a subspace. Then $E(V) = E(V, V) = |V|^3$. On the other hand, if $A \subseteq \mathbb{Z}/p\mathbb{Z}$ is chosen at random from $\mathbb{Z}/p\mathbb{Z}$ (each element chosen independently with probability $\alpha > 0$, then with high probability

$$
E(A) = E(A, A) = \alpha^4 p^3 = \alpha |A|^3.
$$

Lemma 1.17. Assuming that:

- $A, B \subseteq G$
- both non-empty

Then

$$
E(A, B) \ge \frac{|A|^2 |B|^2}{|A + B|}.
$$

Proof. Define $r_{A+B}(x) = |\{(a, b) \in A \times B : a+b = x\}|$ (and notice that this is the same as $|A \cap (x-B)|$). Observe that

$$
E(A, B) = |\{(a, a', b, b') \in A^2 \times B^2 : a + b = a' + b'\}\
$$

= $\sum_{x \in G} r_{A+B}(x)^2$
= $\sum_{x \in A+B} r_{A+B}(x)^2$
 $\geq \frac{(\sum_{x \in A+B} r_{A+B}(x))^2}{|A+B|}$

but

$$
\sum_{x \in G} |A \cup (x - B)| = \sum_{x \in G} \sum_{y \in G} 1\!\!1_A(y) 1_{x - B}(y)
$$

$$
= \sum_{x \in G} \sum_{y \in G} 1\!\!1_A(y) 1_{B}(x - y)
$$

$$
= |A||B|
$$

(As usual, $\mathbb{1}_A$ here means the indicator function).

Lecture 4

In particular, if $|A + A| \leq K|A|$ $|A + A| \leq K|A|$ $|A + A| \leq K|A|$, then

$$
E(A) = E(A, A) \ge \frac{|A|^4}{|A + A|} \ge \frac{|A|^3}{K}.
$$

The converse is *not* true.

Example 1.18. Let G be your favourite (class of) abelian group(s). Then there exist constants $\theta, \eta > 0$ such that for all sufficiently large n, there exists $A \subseteq G$, with $|A| \geq n$ satisfying $E(A) \ge \eta |A|^3$ $E(A) \ge \eta |A|^3$ and $|A + A| \ge \theta |A|^2$ $|A + A| \ge \theta |A|^2$ $|A + A| \ge \theta |A|^2$.

Theorem 1.19 (Balog–Szemeredi–Gowers, Schoen)**.** Assuming that:

- $A \subseteq G$ is finite
- $E(A) \ge \eta |A|^3$ $E(A) \ge \eta |A|^3$ for some $\eta > 0$

Then there exists $A' \subseteq A$ of size at least $c_1(\eta)|A|$ such that $|A' + A'| \leq \frac{|A'|}{c_2(n)}$ $|A' + A'| \leq \frac{|A'|}{c_2(n)}$ $|A' + A'| \leq \frac{|A'|}{c_2(n)}$ $\frac{|A'|}{c_2(\eta)}$, where $c_1(\eta)$ and $c_2(\eta)$ are polynomial in η .

Idea: Find $A' \subseteq A$ such that $\forall a, b \in A'$ such that $a - b$ has many representations as $(a_1 - a_2) + (a_3 - a_4)$ with $a_i \in A$.

We first prove a technical lemma, using a technique called "dependent random choice".

 \Box

by Cauchy-Schwarz

Definition 1.20 (gamma-popular differences). Given $A \subseteq G$ and $\gamma > 0$, let

 $P_{\gamma} = \{x \in G : |A \cap (x + A)| \geq \gamma |A|\}$

be the set of γ*-popular differences* of A.

Lemma 1.21. Assuming that:

- $A \subseteq G$ is finite
- $E(A) \geq \eta |A|^3$ $E(A) \geq \eta |A|^3$
- $c > 0$

Then there is a subset $X \subseteq A$ of size $|X| \geq \eta |A|/3$ such that for all but a (16c)-proportion of pairs $(a, b) \in X^2$, $a - b \in P_{c\eta}$ $a - b \in P_{c\eta}$ $a - b \in P_{c\eta}$.

Proof. Let $U = \{x \in G : |A \cap (x + A)| \leq \frac{1}{2}\eta |A|\}.$ $U = \{x \in G : |A \cap (x + A)| \leq \frac{1}{2}\eta |A|\}.$ $U = \{x \in G : |A \cap (x + A)| \leq \frac{1}{2}\eta |A|\}.$ Then

$$
\sum_{x \in U} |A \cap (x + A)|^2 = \frac{1}{2} \eta |A| \sum_{x} |A \cap (x + A)|
$$

$$
= \frac{1}{2} \eta |A|^3
$$

$$
= \frac{1}{2} E(A)
$$

For $0 \leq i \leq \lceil \log_2 \eta^{-1} \rceil$, let

$$
Q_i = \left\{ x \in G : \frac{|A|}{2^{i+1}} < |A \cap (x+A)| \le \frac{|A|}{2^i} \right\},\
$$

and set $\delta_i = \eta^{-1} 2^{-2i}$. Then

$$
\sum_{i} \delta_{i} |Q_{i}| = \sum_{i} \frac{|Q_{i}|}{\eta^{2^{2i}}}
$$
\n
$$
= \frac{1}{\eta |A|^{2}} \sum_{i} \frac{|A|^{2}}{2^{2i}} |Q_{i}|
$$
\n
$$
= \frac{1}{\eta |A|^{2}} \sum_{i} \frac{|A|^{2}}{2^{2i}} \sum_{x \notin U} \mathbb{1}_{\left\{\frac{|A|}{2^{i+1}} < |A \cap (x+A)| \le \frac{|A|}{2^{i}}\right\}}
$$
\n
$$
\ge \frac{1}{\eta |A|^{2}} \sum_{x \notin U} |A \cap (x+A)|^{2}
$$
\n
$$
\ge \frac{1}{\eta |A|^{2}} \cdot \frac{1}{2} E(A)
$$
\n
$$
= \frac{1}{2} |A|
$$
\n
$$
(*)
$$
\n
$$
(*)
$$

Let $S = \{(a, b) \in A^2 : a - b \notin P_{c\eta}\}.$ $S = \{(a, b) \in A^2 : a - b \notin P_{c\eta}\}.$ $S = \{(a, b) \in A^2 : a - b \notin P_{c\eta}\}.$ Then

$$
\sum_{i} \sum_{(a,b)\in S} |(A-a) \cap (A-b) \cap Q_i| \le \sum_{(a,b)\in S} \underbrace{|(A-a) \cap (A-b)|}_{\text{by definition of } S}
$$
\n
$$
\le |S| \cdot c\eta|A|
$$
\n
$$
\le c\eta|A|^3
$$
\n
$$
\le 2c\eta|A|^2 \cdot \frac{1}{2}|A|
$$
\n
$$
\stackrel{(*)}{\le} 2c\eta|A|^2 \sum_{i} \delta_i|Q_i|
$$

Hence there exists i_0 such that

$$
\sum_{(a,b)\in S} |(A-a)\cap (A-b)\cap Q_{i_0}| \leq 2c\eta |A|^2 \delta_{i_0} |Q_{i_0}|.
$$

Let $Q = Q_{i_0}, \delta = \delta_{i_0}, \lambda = 2^{-i_0}$. So

$$
\sum_{(a,b)\in S} |(A-a)\cap(A-b)\cap Q| \le 2c\eta\delta|A|^2|Q|. \tag{**}
$$

Lecture 5 Find x such that $X = |A \cap (A + x)|$ is large.

Given $x \in G$, let $X(x) = A \cap (x + A)$. Then

$$
\mathbb{E}_{x \in Q} |X(x)| = \frac{1}{|Q|} \sum_{x \in Q} |A \cap (x + A)| \ge \frac{1}{2}\lambda |A|.
$$

Let $T(x) = \{(a, b) \in X(x)^2 : a - b \notin P_{c\eta}\}.$ $T(x) = \{(a, b) \in X(x)^2 : a - b \notin P_{c\eta}\}.$ $T(x) = \{(a, b) \in X(x)^2 : a - b \notin P_{c\eta}\}.$ Then

$$
\mathbb{E}_{X \in Q} |T(x)| = \mathbb{E}_{x \in Q} |\{(a, b) \in (A \cap (\underbrace{x}_{x \in A - a \cap A - b} + A))^2 : a - b \notin P_{c\eta}\}|
$$

\n
$$
= \frac{1}{|Q|} \sum_{x \in Q} |\{(a, b) \in S : x \in A - a \cap A - b\}|
$$

\n
$$
= \frac{1}{|Q|} \sum_{(a, b) \in S} |(A - a) \cap (A - b) \cap Q|
$$

\n
$$
\leq \frac{1}{|Q|} 2c\eta |A|^2 \delta |Q|
$$

\n
$$
= 2c\eta \delta |A|^2
$$

\n
$$
= 2c\lambda^2 |A|^2
$$

Therefore,

$$
\mathbb{E}_{x \in Q} |X(x)|^2 - (16c)^{-1} |T(x)| \stackrel{\text{C-S}}{\leq} (\mathbb{E}_{x \in Q} |X(x)|)^2 - (16c)^{-1} \mathbb{E}_{x \in Q} |T(x)|
$$

$$
\leq \left(\frac{\lambda}{2}\right)^2 |A|^2 - (16c)^{-1} 2c\lambda^2 |A|^2
$$

$$
= \left(\frac{\lambda^2}{4} - \frac{\lambda^2}{8}\right) |A|^2
$$

$$
= \frac{\lambda^2}{8} |A|
$$

So there exists $x \in Q$ such that $|X(x)|^2 \geq \frac{\lambda^2}{8}$ $\frac{\lambda^2}{8}$ |A|², in which case we have

$$
|X| \ge \frac{\lambda}{\sqrt{8}}|A| \ge \frac{\eta}{3}|A|
$$

 \Box

and $|T(x)| \le 16c|X|^2$.

Proof of [Theorem 1.19.](#page-7-0) Given $A \subseteq G$ with $E(A) \geq \eta |A|^3$ $E(A) \geq \eta |A|^3$, apply [Lemma 1.21](#page-8-1) with $c = 2^{-7}$ to otain $X \subseteq A$ of size $|X| \geq \frac{\eta}{3}|A|$ such that for all but $\frac{1}{8}$ of pairs $(a, b) \in X^2$, $a - b \in P_{\eta/2^7}$ $a - b \in P_{\eta/2^7}$ $a - b \in P_{\eta/2^7}$. In particular, the bipartite graph

$$
G = (X \dot{\cup} X, \{(x, y) \in X \times X : x - y \in P_{\eta/2^7}\})
$$

has at least $\frac{7}{8}|X|^2$ edges. Let $A' = \left\{ x \in X : \deg(x) \geq \frac{3}{4}|X| \right\}$.

Clearly, $|A'| \geq \frac{|X|}{8}$. For any $a, b \in A'$, there are at least $\frac{|X|}{2}$ elements $y \in X$ such that $(a, y), (b, y) \in$ $E(G)$ $(a - y, b - y \in P_{\eta/2^7}).$ $(a - y, b - y \in P_{\eta/2^7}).$ $(a - y, b - y \in P_{\eta/2^7}).$

Thus $a - b = (a - y) - (b - y)$ has at least

$$
\underbrace{\frac{\eta}{6}|A|}_{\text{choices for } y} \cdot \frac{\eta}{2^7}|A| \cdot \frac{\eta}{2^7}|A| \ge \frac{\eta^3}{2^{17}}|A|^3
$$

representations of the form $a_1 - a_2 - (a_3 - a_4)$ with $a_i \in A$.

It follows that

$$
\frac{\eta^3}{2^{17}}|A|^3|A' - A'| \le |A|^4
$$

\n
$$
\implies |A' - A'| \le 2^{17}\eta^{-3}|A|
$$

\n
$$
\le 2^{22}\eta^{-4}|A'|
$$

Thus $|A' + A'| \leq 2^{44} \eta^{-8} |A'|$.

 \Box

2 Fourier-analytic techniques

In this chapter we will assume that G is *finite* abelian.

G comes equipped with a group \hat{G} of characters, i.e. homomorphisms $\gamma : G \to \mathbb{C}$. In fact, \hat{G} is isomorphic to G .

See [Representation Theory notes](https://notes.ggim.me/rt) for more information about characters and proofs of this as well as some of the facts below.

Example 2.1.

- (i) If $G = \mathbb{F}_p^n$, then for any $\gamma \in \hat{G} = \mathbb{F}_p^n$, we have an associated character $\gamma(x) = e(\gamma \cdot x/p)$, where $e(y) = e^{2\pi i y}$.
- (ii) If $G = \mathbb{Z}/N\mathbb{Z}$ $G = \mathbb{Z}/N\mathbb{Z}$, then any $\gamma \in \widehat{G} = \mathbb{Z}/N\mathbb{Z}$ can be associated to a character $\gamma(x) = e(\gamma x/N)$.

Notation. Given $B \subseteq G$ nonempty, and any function $g : B \to \mathbb{C}$, let

$$
\mathbb{E}_{x \in B} g(x) = \frac{1}{|B|} \sum_{x \in B} g(x).
$$

Lemma 2.2. Assuming that:

• $\gamma \in \widehat{G}$ $\gamma \in \widehat{G}$ $\gamma \in \widehat{G}$

Then

$$
\mathbb{E}_{x \in G} \gamma(x) = \begin{cases} 1 & \text{if } \gamma = 1 \\ 0 & \text{otherwise} \end{cases},
$$

and for all $x \in G$,

$$
\sum_{\gamma \in \widehat{G}} \gamma(x) = \begin{cases} |\widehat{G}| & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}
$$

.

Proof. The first equality in eqch case is trivial. Suppose $\gamma \neq 1$. Then there exists $y \in G$ with $\gamma(y) \neq 1$. Then

$$
\gamma(y)\mathbb{E}_{z \in G} \gamma(z) = \mathbb{E}_{z \in G} \gamma(y+z)
$$

=
$$
\mathbb{E}_{z' \in G} \gamma(z')
$$

So $\mathbb{E}_{z \in G} \gamma(z) = 0$ $\mathbb{E}_{z \in G} \gamma(z) = 0$ $\mathbb{E}_{z \in G} \gamma(z) = 0$.

For the second part, note that given $x \neq 0$, there must by $\gamma \in \widehat{G}$ $\gamma \in \widehat{G}$ $\gamma \in \widehat{G}$ such that $\gamma(x) \neq 1$, for otherwise \widehat{G} would act trivially on $\langle x \rangle$, hence would also be the dual group for $G/\langle x \rangle$, a contradiction. would act trivially on $\langle x \rangle$, hence would also be the dual group for $G/\langle x \rangle$, a contradiction.

Definition 2.3 (Fourier transform). [G](#page-12-1)iven $f : G \to \mathbb{C}$, define its *Fourier transform* $\hat{f} : \hat{G} \to \mathbb{C}$ by $\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \overline{\gamma(x)}.$ $\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \overline{\gamma(x)}.$ $\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \overline{\gamma(x)}.$

Lecture 6

It is easy to verify the inversion formula: for all $x \in G$,

$$
f(x) = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma)\gamma(x).
$$

Indeed,

$$
\sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma)\gamma(x) = \sum_{\gamma \in \widehat{G}} \mathbb{E}_{y \in G} f(y)\overline{\gamma(y)}\gamma(x)
$$

$$
= \mathbb{E}_{y \in G} f(y) \sum_{\gamma \in \widehat{G}} \gamma(x - y)
$$

$$
= |G| \text{ iff } x = y
$$

$$
= f(x) \qquad \text{by Lemma 2.2}
$$

Given $A \subseteq G$, the *indicator* or *characteristic function* of A , $\mathbb{1}_A : G \to \{0,1\}$ is defined as usual.

Note that

$$
\widehat{\mathbb{1}_A}(1) = \mathbb{E}_{x \in G} \mathbb{1}_A(x) 1(x) = \frac{|A|}{|G|}.
$$

The *density* of A in G (often denoted by α).

Definition (Characteristic measure). Given non-empty $A \subseteq G$, the *characteristic measure* $\mu_A: G \to [0, |G|]$ is defined by $\mu_A(x) = \alpha^{-1} \mathbb{1}_A(x)$. Note that $\mathbb{E}_{x \in G} \mu_A(x) = 1 = \widehat{\mu}_A(1)$ $\mathbb{E}_{x \in G} \mu_A(x) = 1 = \widehat{\mu}_A(1)$ $\mathbb{E}_{x \in G} \mu_A(x) = 1 = \widehat{\mu}_A(1)$.

Definition (Balanced function). The *balanced function* $f_A : G \to [-1,1]$ is given by $f_A(x) =$ $\mathbb{1}_A(x) - \alpha$. Note that $\mathbb{E}_{x \in G} f_A(x) = 0 = \widehat{f_A}(1)$ $\mathbb{E}_{x \in G} f_A(x) = 0 = \widehat{f_A}(1)$ $\mathbb{E}_{x \in G} f_A(x) = 0 = \widehat{f_A}(1)$.

Example 2.4. Let $V \leq \mathbb{F}_p^n$ be a subspa[c](#page-12-1)e. Then for $t \in \widehat{\mathbb{F}_p^n}$, we have

$$
\widehat{\mathbb{1}_V}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} \mathbb{1}_V(x) e\left(-\frac{x \cdot t}{p}\right)
$$

$$
= \frac{|V|}{p^n} \mathbb{1}_{V^\perp}(t)
$$

where $V^{\perp} = \{t \in \widehat{\mathbb{F}_p^n} : x \cdot t = 0 \,\forall x \in V\}$ $V^{\perp} = \{t \in \widehat{\mathbb{F}_p^n} : x \cdot t = 0 \,\forall x \in V\}$ $V^{\perp} = \{t \in \widehat{\mathbb{F}_p^n} : x \cdot t = 0 \,\forall x \in V\}$ is the *annihilator* of V. In other words, $\widehat{\mathbb{1}_V}(t) = \mu_{V^{\perp}}(t)$.

Example 2.5. Let $R \subseteq G$ be such that each $x \in G$ lies in R independently with probability $\frac{1}{2}$. Then with high probability

$$
\sup_{\gamma \neq 1} |\widehat{\mathbb{1}_R}(\gamma)| = O\left(\sqrt{\frac{\log|G|}{|G|}}\right)
$$

.

This follows from *Chernoff's inequality*: Given C-valued independent random variables X_1, X_2, \ldots, X_n with mean 0, then for all $\theta > 0$, we have

$$
\mathbb{P}\left(\left|\sum_{i=1}^n X_i\right| \geq \theta \sqrt{\sum_{i=1}^n \|X_i\|_{L^{\infty}(\mathbb{P})}^2}\right) \leq 4 \exp\left(-\frac{\theta^2}{4}\right).
$$

Example 2.6. Let $Q = \{x \in \mathbb{F}_p^n : x \cdot x = 0\} \subseteq \mathbb{F}_p^n$ with $p > 2$. Then

$$
\frac{|Q|}{p^n} = \frac{1}{p} + O(p^{-\frac{n}{2}})
$$

and $\sup_{t\neq 0} |\widehat{\mathbb{1}_Q}(t)| = O(p^{-\frac{n}{2}}).$ $\sup_{t\neq 0} |\widehat{\mathbb{1}_Q}(t)| = O(p^{-\frac{n}{2}}).$ $\sup_{t\neq 0} |\widehat{\mathbb{1}_Q}(t)| = O(p^{-\frac{n}{2}}).$

Given $f, g: G \to \mathbb{C}$, we write

$$
\langle f, g \rangle = \mathbb{E}_{x \in G} f(x) \overline{g(x)}
$$
 and $\langle \widehat{f}, \widehat{g} \rangle = \sum_{\gamma \in \widehat{G}} \widehat{f}(\gamma) \overline{\widehat{g}(\gamma)}$.

Consequently,

$$
||f||_{L^2(G)}^2 = \mathbb{E}_{x \in G} |f(x)|^2
$$
 and $||\hat{f}||_{L^2(\widehat{G})}^2 = \sum_{\gamma \in \widehat{G}} |\hat{f}(\gamma)|^2$.

Lemma 2.7. Assuming that:

$$
\bullet\;\; f,g:G\to \mathbb{C}
$$

Then

(i)
$$
||f||^2_{L^2(G)} = ||\hat{f}||^2_{l^2(\hat{G})}
$$
 (Parseval's identity)
(ii) $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$ (Plancherel's identity)

Proof. Exercise (hopefully easy).

 \Box

Definition 2.8 (Spectrum). Let $1 \ge \rho > 0$ and $f : G \to \mathbb{C}$. Define the ρ -large spectrum of f to be

$$
\operatorname{Spec}_{\rho}(f) = \{ \gamma \in G : |f(\gamma)| \ge \rho \|f\|_{1} \}.
$$

Example 2.9. By [Example 2.4,](#page-13-2) if $f = \mathbb{1}_V$ with $V \leq \mathbb{F}_p^n$, then $\forall \rho > 0$,

$$
\operatorname{Spec}_{\rho}(\mathbb{1}_V) = \left\{ t \in \widehat{\mathbb{F}_p^n} : |\widehat{\mathbb{1}_V}(t)| \ge \rho \frac{|V|}{p^n} \right\} = V^{\perp}.
$$

Lemma 2.10. Assuming that:

• $\rho > 0$

Then

$$
|\operatorname{Spec}_{\rho}(f)| \leq \rho^{-2} \frac{\|f\|_2^2}{\|f\|_1^2}.
$$

Proof. By [Parseval's identity,](#page-14-0)

$$
||f||_2^2 = ||\hat{f}||_2^2
$$

=
$$
\sum_{\gamma \in \hat{G}} |\hat{f}(\gamma)|^2
$$

$$
\geq \sum_{\gamma \in \text{Spec } \rho(f)} |\hat{f}(\gamma)|^2
$$

$$
\geq |\text{Spec } \rho(f)|(\rho ||f||_1)^2
$$

In particular, if $f = \mathbb{1}_A$ for $A \subseteq G$, then

$$
||f||_1 = \alpha = \frac{|A|}{|G|} = ||f||_2^2,
$$

Lecture 7 so $|\operatorname{Spec}_{\rho}(\mathbb{1}_A)| \leq \rho^{-2} \alpha^{-1}$.

Definition 2.11 (Convolution). Given $f, g: G \to \mathbb{C}$, we define their *convolution* $f * g: G \to \mathbb{C}$ by $f * g(x) = \mathbb{E}_{y \in G} f(y)g(x - y) \quad \forall x \in G.$ $f * g(x) = \mathbb{E}_{y \in G} f(y)g(x - y) \quad \forall x \in G.$ $f * g(x) = \mathbb{E}_{y \in G} f(y)g(x - y) \quad \forall x \in G.$

Example 2.12. Given $A, B \subseteq G$,

$$
\mathbb{1}_A * \mathbb{1}_B(x) = \mathbb{E}_{y \in G} \mathbb{1}_A(y) \mathbb{1}_B(x - y) = \mathbb{E}_{y \in G} \mathbb{1}_A(y) \mathbb{1}_{x - B}(y) = \frac{|A \cap (x - B)|}{|G|} = \frac{1}{|G|} r_{A + B}(x).
$$

In particular, $\mathrm{supp}(\mathbbm{1}_A * \mathbbm{1}_B) = A + B.$ $\mathrm{supp}(\mathbbm{1}_A * \mathbbm{1}_B) = A + B.$ $\mathrm{supp}(\mathbbm{1}_A * \mathbbm{1}_B) = A + B.$

Lemma 2.13. Assuming that:

• $f, g: G \to \mathbb{C}$

Then

$$
\widehat{f * g}(\gamma) = \widehat{f}(\gamma)\widehat{g}(\gamma)\forall \gamma \in \widehat{G}.
$$

Proof.

$$
\widehat{f * g}(\gamma) = \mathbb{E}_{x \in G} f * g(x) \overline{\gamma(x)}
$$

=
$$
\mathbb{E}_{x \in G} \mathbb{E}_{[\in y]} G f(y) g(x - y) \overline{\gamma(x)}
$$

=
$$
\mathbb{E}_{u \in G} \mathbb{E}_{[\in y]} G f(y) g(u) \overline{\gamma(u + y)}
$$

=
$$
\widehat{f}(\gamma) \widehat{g}(\gamma)
$$

.

 \Box

Example 2.14.

$$
\mathbb{E}_{x+y=z+w} f(x)f(y)\overline{f(z)f(w)} = ||\widehat{f}||_{l^4(\widehat{G})}^4
$$

In particular,

$$
\|\widehat{\mathbb{1}_A}\|_{l^4(\widehat{G})}^4 = \frac{E(A)}{|G|^3}
$$

for any $A\subseteq G.$

Theorem 2.15 (Bogolyubov's lemma)**.** Assuming that:

• $A \subseteq \mathbb{F}_p^n$ be a set of density α

Then there exists $V \leq \mathbb{F}_p^n$ of codimension $\leq 2\alpha^{-2}$ such that $V \subseteq A + A - A - A$ $V \subseteq A + A - A - A$ $V \subseteq A + A - A - A$.

Proof. Observe

$$
2A - 2A = \sup\left(\underbrace{\mathbb{1}_A * \mathbb{1}_A * \mathbb{1}_{-A} * \mathbb{1}_{-A}}_{=:g}\right),
$$

so wish to find $V \leq \mathbb{F}_p^n$ such that $g(x) > 0$ for all $x \in V$. Let $S = \operatorname{Spec}_{\rho}(\mathbb{1}_A)$ with $\rho = \sqrt{\frac{\alpha}{2}}$ and let $V = \langle S \rangle^{\perp}$. By [Lemma 2.10,](#page-15-2) $\text{codim}(V) \leq |S| \leq \rho^{-2} \alpha^{-1}$. Fix $x \in V$.

$$
g(x) = \sum_{t \in \widehat{\mathbb{F}}_p^n} \widehat{g}(t)e(x \cdot t/p)
$$

\n
$$
= \sum_{t \in \widehat{\mathbb{F}}_p^n} |\widehat{\mathbb{I}_A}(t)|^4 e(x \cdot t/p)
$$

\n
$$
= \alpha^4 + \sum_{t \neq 0} |\widehat{\mathbb{I}_A}(t)|^4 e(x \cdot t/p)
$$

\n
$$
= \alpha^4 + \sum_{t \in S \setminus \{0\}} |\widehat{\mathbb{I}_A}(t)|^4 e(x \cdot t/p) + \sum_{t \notin S} |\widehat{\mathbb{I}_A}(t)|^4 e(x \cdot t/p)
$$

\n(1)

Note $(1) \geq (\rho \alpha)^4$ since $x \cdot t = 0$ for all $t \in S$ and

$$
|(2)| \le \sup_{t \notin S} |\widehat{\mathbb{1}_A}(t)|^2 \sum_{t \notin S} |\widehat{\mathbb{1}_A}|^2
$$

\n
$$
\le \sup_{t \in S} |\widehat{\mathbb{1}_A}(t)|^2 \sum_{t \notin S} |\widehat{\mathbb{1}_A}|^2
$$

\n
$$
\le (\rho \alpha)^2 ||\mathbb{1}_A||_2^2
$$

\n
$$
= \rho^2 \alpha^3
$$
 by Parseval's identity

hence $g(x) > 0$ (in fact, $\geq \frac{\alpha^4}{2}$) $\frac{x^4}{2}$) for all $x \in V$ and $\text{codim}(V) \leq 2\alpha^{-2}$.

Example 2.16. The set $A = \{x \in \mathbb{F}_2^n : |x| \geq \frac{n}{2} + \frac{\sqrt{n}}{2}\}$ $\frac{\pi}{2}$ (where |x| counts the number of 1s **Example 2.10.** The set $A = \{x \in \mathbb{F}_2 : |x| \geq \frac{1}{2} + \frac{1}{2}\}$ (where |x| counts the number of is in x) has density $\geq \frac{1}{8}$, but there is no coset C of any subspace of codimension \sqrt{n} such that $C \subseteq A + A (= A - A).$ $C \subseteq A + A (= A - A).$ $C \subseteq A + A (= A - A).$

Lemma 2.17. Assuming that:

- $A \subseteq \mathbb{F}_p^n$ of density α
- $\rho > 0$
- $\sup_{t\neq 0} |\widehat{\mathbb{1}_A}(t)| \ge \rho \alpha$

Then there exists $V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that

$$
|A \cap (x+V)| \ge \alpha \left(1+\frac{\rho}{2}\right)|V|.
$$

 \Box

Proof. Let $t \neq 0$ be su[c](#page-13-0)h that $|\widehat{\mathbb{1}_A}(t)| \geq \rho \alpha$, and let $V = \langle t \rangle^{\perp}$. Write $v_j + V$ for $j \in [p] = \{1, 2, ..., p\}$ for the p distinct cosets $v_j + V = \{x \in \mathbb{F}_p^n : x \cdot t = j\}$ of V. Then

$$
\widehat{\mathbb{1}_A}(t) = \widehat{f_A}(t)
$$
\n
$$
= \mathbb{E}_{x \in \mathbb{F}_p^n} (\mathbb{1}_A(x) - \alpha) e(-x \cdot t/p)
$$
\n
$$
= \mathbb{E}_{j \in [p]} \mathbb{E}_{x \in v_j + V} (\mathbb{1}_A(x) - \alpha) e(-j/p)
$$
\n
$$
= \mathbb{E}_{j \in [p]} \left(\frac{|A \cap (v_j + V)|}{|v_j + V|} - \alpha \right) e(-j/p)
$$

By triangle inequality, $\mathbb{E}_{j \in [p]}|a_j| \ge \rho \alpha$ $\mathbb{E}_{j \in [p]}|a_j| \ge \rho \alpha$ $\mathbb{E}_{j \in [p]}|a_j| \ge \rho \alpha$. But note that $\mathbb{E}_{j \in [p]}a_j = 0$ so $\mathbb{E}_{j \in [p]}a_j + |a_j| \ge \rho \alpha$, hence there exists $j \in [p]$ such that $a_j + |a_j| \ge \rho \alpha$. Then $a_j \ge \frac{\rho \alpha}{2}$.

Lecture 8

Notation. Given $f, g, h : G \to \mathbb{C}$, write

$$
T_3(f,g,h) = \mathbb{E}_{x,d \in G} f(x)g(x+d)h(x+2d).
$$

Notation. Given $A \subseteq G$, write

$$
2 \cdot A = \{2a : a \in A\},
$$

to be distinguished from $2A = A + A = \{a + a' : a, a' \in A\}.$ $2A = A + A = \{a + a' : a, a' \in A\}.$ $2A = A + A = \{a + a' : a, a' \in A\}.$

Lemma 2.18. Assuming that:

- $p \geq 3$ prime
- $A \subseteq \mathbb{F}_p^n$ of density $\alpha > 0$
- $\sup_{t\neq0}|\widehat{\mathbb{1}_A}(t)|\leq\varepsilon$

Then the number of 3-term arithmetic progressions in A differs from $\alpha^3(p^n)^2$ by at most $\varepsilon(p^n)^2$.

Proof. The number of 3-term arithmetic progressions in A is $(p^n)^2$ times

$$
T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) = \mathbb{E}_{x, d \in \mathbb{F}_p^n} \mathbb{1}_A(x) \mathbb{1}_(x + d) \mathbb{1}_A(x + 2d)
$$

\n
$$
= \mathbb{E}_{x, y \in \mathbb{F}_p^n} \mathbb{1}_A(x) \mathbb{1}_A(y) \mathbb{1}_A(2y - x)
$$

\n
$$
= \mathbb{E}_{y \in G} \mathbb{1}_A(y) \mathbb{E}_{x \in G} \mathbb{1}_A(x) \mathbb{1}_A(2y - x)
$$

\n
$$
= \mathbb{E}_{y \in G} \mathbb{1}_A(y) \mathbb{1}_A * \mathbb{1}_A(2y)
$$

\n
$$
= \langle \mathbb{1}_2 A, \mathbb{1}_A * \mathbb{1}_A \rangle
$$

By [Plancherel's identity](#page-14-1) and [Lemma 2.13,](#page-16-0) we have

$$
= \langle \widehat{\mathbb{1}_{2\cdot A}}, \widehat{\mathbb{1}_{A}}^2 \rangle
$$

=
$$
\sum_{t} \widehat{\mathbb{1}_{2\cdot A}}(t) \overline{\widehat{\mathbb{1}_{A}}(t)^2}
$$

=
$$
\alpha^3 + \sum_{t \neq 0} \widehat{\mathbb{1}_{2\cdot A}}(t) \overline{\widehat{\mathbb{1}_{A}}(t)^2}
$$

but

$$
\left| \sum_{t \neq 0} \widehat{\mathbb{1}_{2\cdot A}}(t) \widehat{\mathbb{1}_{A}}(t)^{2} \right| \leq \sup_{t \neq 0} |\widehat{\mathbb{1}_{A}}(t)| \sum_{t \neq 0} |\widehat{\mathbb{1}_{2\cdot A}}(t)| |\widehat{\mathbb{1}_{A}}(t)|
$$

$$
\leq \sup_{t \neq 0} |\widehat{\mathbb{1}_{A}}(t)| \left(\sum_{t} |\widehat{\mathbb{1}_{2\cdot A}}(t)|^{2} \sum_{t} |\widehat{\mathbb{1}_{A}}(t)|^{2} \right)^{\frac{1}{2}}
$$

$$
\leq \varepsilon || \widehat{\mathbb{1}_{2\cdot A}} ||_{2} || \widehat{\mathbb{1}_{A}} ||_{2}
$$

$$
= \varepsilon \cdot \alpha
$$

by [Parseval's identity.](#page-14-0)

 \Box

Theorem 2.19 (Meshulam's Theorem)**.** Assuming that:

• $A \subseteq \mathbb{F}_p^n$ a set containing no non-trivial 3 term arithmetic progressions

Then
$$
|A| = O\left(\frac{p^n}{\log p^n}\right)
$$
.

Proof. By assumption,

$$
T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) = \frac{|A|}{(p^n)^2} = \frac{\alpha}{p^n}.
$$

But as in (the proof of) [Lemma 2.18,](#page-18-2)

$$
|T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^3| \le \sup_{t \neq 0} |\widehat{\mathbb{1}_A}(t)| \cdot \alpha,
$$

so provided $p^n \geq 2\alpha^{-2}$, i.e. $T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) \leq \frac{\alpha^3}{2}$ we have $\sup_{t \neq 0} |\widehat{\mathbb{1}_A}(t)| \geq \frac{\alpha^2}{2}$ $\frac{x^2}{2}$.

So by [Lemma 2.17](#page-17-0) with $\rho = \frac{\alpha}{2}$, there exists $V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that $|A \cap (x +$ $|V| \geq \left(\alpha + \frac{\alpha^2}{4}\right)$ $\frac{\alpha^2}{4}\Big)$ |V|.

We iterate this observation: let $A_0 = A, V_0 = \mathbb{F}_p^n, \alpha_0 = \frac{|A_0|}{|V_0|}$ $\frac{|A_0|}{|V_0|}$. At the *i*-th step, we are given a set $A_{i-1} \subseteq V_{i-1}$ of density α_{i-1} with no non-trivial 3 term arithmetic progressions. Provided that $p^{\dim(V_{i-1})} \geq 2\alpha_{i-1}^{-2}$, there exists $V_i \leq V_{i-1}$ of codimension 1, $x_i \in V_{i-1}$ such that

$$
|(A - x_i) \cap V_i| \ge \left(\alpha_{i-1} + \frac{(\alpha_{i-1})^2}{4}\right)|V_i|.
$$

Set $A_i = (A - x_i) \cap V_i \subseteq V_i$, has density $\geq \alpha_{i-1} + \frac{(\alpha_{i-1})^2}{4}$ $\frac{(-1)^{2}}{4}$, and is free of non-trivial 3 term arithmetic progressions.

Through this iteration, the density increases from α to 2α in at most $\frac{\alpha}{\left(\frac{\alpha^2}{4}\right)} = 4 \cdot \alpha^{-1}$ steps.

2 α to 4α in at most $\frac{2\alpha}{\left(\frac{(2\alpha)^2}{4}\right)} = 2\alpha^{-1}$ steps and so on.

So reaches 1 in at most

$$
4\alpha^{-1}\left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dotsb\right) \le 8\alpha^{-1}
$$

steps. The argument must end with $\dim(V_i) \geq n - 8\alpha^{-1}$, at which point we must have had $p^{\dim(V_i)}$ $2\alpha_{i-1}^2 \leq 2\alpha^{-2}$, or else we could have continued.

√ $\overline{2}p^{-\frac{n}{4}}$ (or $\alpha^{-2} < 2p^{\frac{n}{2}}$) whence $p^{n-8\alpha^{-1}} \leq p^{\frac{n}{2}}$, or $\frac{n}{2} \leq 2\alpha^{-1}$. But we may assume that $\alpha \geq$ \Box

At the time of writing, the largest known subset of \mathbb{F}_3^n containing no non-trivial 3 term arithmetic progressions has size $(2.2202)^n$.

We will prove an upper bound of the form $(2.756)^n$.

Theorem 2.20 (Roth's theorem)**.** Assuming that:

- $A \subseteq [N] = \{1, \ldots, N\}$
- A contains no non-trivial 3 term arithmetic progressions

Then
$$
|A| = O\left(\frac{N}{\log \log N}\right)
$$
.

Lecture 9

Example 2.21 (Behrend's example). There exists $A \subseteq [N]$ of size at least $|A| \ge$ $\exp(-c\sqrt{\log N})N$ containing no non-trivial 3 term arithmetic progressions.

Lemma 2.22. Assuming that:

- $A \subseteq [N]$ of density $\alpha > 0$
- $N > 50\alpha^{-2}$
- A contains no non-trivial 3 term arithmetic progressions
- *p* a prime in $\left[\frac{N}{3}, \frac{2N}{3}\right]$
- let $A' = A \cap [p] \subseteq \mathbb{Z}/p\mathbb{Z}$

Then one of the following holds:

- (i) $\sup_{t\neq0} |\widehat{\mathbb{1}_{A'}(t)}| \geq \frac{\alpha^2}{10}$ $\sup_{t\neq0} |\widehat{\mathbb{1}_{A'}(t)}| \geq \frac{\alpha^2}{10}$ $\sup_{t\neq0} |\widehat{\mathbb{1}_{A'}(t)}| \geq \frac{\alpha^2}{10}$ (where the Fourier coefficient is computed in $\mathbb{Z}/p\mathbb{Z}$)
- (ii) There exists an interval $J \subseteq [N]$ of length $\geq \frac{N}{3}$ such that $|A \cap J| \geq \alpha \left(1 + \frac{\alpha}{400}\right)|J|$

Proof. We may assume that $|A'| = |A \cap [p]| \ge \alpha \left(1 - \frac{\alpha}{200}\right) p$ since otherwise

$$
|A \cap [p+1, N]| \ge \alpha N - \left(\alpha \left(1 - \frac{\alpha}{200}\right)p\right)
$$

$$
= \alpha (N - p) + \frac{\alpha^2}{200}p
$$

$$
\ge \left(\alpha + \frac{\alpha^2}{400}\right)(N - p)
$$

so we would be in Case (ii) with $J = [p+1, N]$. Let $A'' = A' \cap \left[\frac{p}{3}, \frac{2p}{3}\right]$. Note that all 3 term arithmetic progressions of the form $(x, x + d, x + 2d) \in A' \times A'' \times A''$ are in fact arithmetic progressions in [N].

If $|A' \cap \left[\frac{p}{3}\right]|$ or $|A' \cap \left[\frac{2p}{3}, p\right]|$ were at least $\frac{2}{5}|A'|$, we would again be in case (ii). So we may assume that $|A''| \geq \frac{|A'|}{5}$ $rac{41}{5}$.

Now as in [Lemma 2.18](#page-18-2) and [Theorem 2.19,](#page-19-0)

$$
\frac{\alpha''}{p} = \frac{|A''|}{p^2}
$$

$$
T_3(\mathbb{1}_{A'}, \mathbb{1}_{A''}, \mathbb{1}_{A''})
$$

$$
= \alpha'(\alpha'')^2 + \sum_t \overbrace{\mathbb{1}_{A'}(t) \mathbb{1}_{A''}(t)}^{\infty} \overbrace{\mathbb{1}_{A''}(t) \mathbb{1}_{2 \cdot A''}(t)}
$$

where $\alpha' = \frac{|A'|}{n}$ $\frac{A'}{p}$ and $\alpha'' = \frac{|A''|}{p}$ $\frac{1}{p}$. So as before,

$$
\frac{\alpha'\alpha''}{2}\leq \sup_{t\neq 0}|\mathbb{1}_{A'}(t)|\cdot \alpha'',
$$

provided that $\frac{\alpha''}{p} \leq \frac{1}{2}\alpha'(\alpha'')^2$, i.e. $\frac{2}{p} \leq \alpha'\alpha''$. (Check this is satisfied).

Hence

$$
\sup_{t\neq 0} |\widehat{\mathbb{1}_{A'}(t)}| \ge \frac{\alpha'\alpha''}{2} \ge \frac{1}{2} \left(\alpha \left(1 - \frac{\alpha}{200} \right) \right)^2 \cdot \frac{2}{5} \ge \frac{\alpha^2}{10}.
$$

Lemma 2.23. Assuming that:

- $m \in \mathbb{N}$
- $\varphi : [m] \to \mathbb{Z}/p\mathbb{Z}$ be given by $x \mapsto tx$ for some $t \neq 0$
- $\varepsilon > 0$

Then there exists a partition of $[m]$ into progressions P_i of length $l_i \in \left[\frac{\varepsilon \sqrt{m}}{2}\right]$ $\left[\frac{\sqrt{m}}{2}, \varepsilon\sqrt{m}\right]$ such that

$$
diam(\varphi(P_i)) = \max_{x,y \in P_i} |\varphi(x) - \varphi(y)| \le \varepsilon p
$$

for all i.

Proof. Let $u = \lfloor \sqrt{m} \rfloor$ and consider $0, t, 2t, \ldots, ut$. By Pigeonhole, there exists $0 \le v < w \le u$ usuch that $|wt-vt| = |(w-v)t| \leq \frac{p}{u}$. Set $s = w-v$, so $|st| \leq \frac{p}{u}$. Divide $[m]$ into residue classes modulo s, each of which has size at least $\frac{m}{s} \geq \frac{m}{4}$. But each residue class can be divided into arithmetic progressions of the form $a, a + s, \ldots, a + ds$ with $\varepsilon \frac{u}{2} < d \leq \varepsilon u$. The diameter of the image of each progression under φ is $|dst| \leq d_u^{\underline{p}} \leq \varepsilon u_u^{\underline{p}} = \varepsilon p.$

Lemma 2.24. Assuming that:

- $A \subseteq [N]$ of density $\alpha > 0$
- *p* a prime in $\left[\frac{N}{3}, \frac{2N}{3}\right]$
- let $A' = A \cap [p] \subseteq \mathbb{Z}/p\mathbb{Z}$
- $|\widehat{\mathbb{1}_{A'}(t)}| \geq \frac{\alpha^2}{20}$ $|\widehat{\mathbb{1}_{A'}(t)}| \geq \frac{\alpha^2}{20}$ $|\widehat{\mathbb{1}_{A'}(t)}| \geq \frac{\alpha^2}{20}$ for some $t \neq 0$

Then there exists a progression $P \subseteq [N]$ of length at least $\alpha^2 \frac{\sqrt{N}}{500}$ such that $|A \cap P| \ge$ $\alpha\left(1+\frac{\alpha}{80}\right)|P|.$

Lecture 10

Proof. Let $\varepsilon = \frac{\alpha^2}{40\pi}$ $\frac{\alpha^2}{40\pi}$, and use [Lemma 2.23](#page-22-0) to partition [p] into progressions P_i of length

$$
\geq \varepsilon \sqrt{\frac{p}{2}} \geq \frac{\alpha^2}{40\pi} \frac{\sqrt{\frac{N}{3}}}{2} \geq \frac{\alpha^2 \sqrt{N}}{500}
$$

and $\text{diam}(\varphi(P_i)) \leq \varepsilon p$. Fix one x_i from each of the P_i . Then

$$
\frac{\alpha^2}{20} \leq |\widehat{f_{A'}}(t)|
$$
\n
$$
= \left| \frac{1}{p} \sum_{i} \sum_{x \in P_i} f_{A'}(x) e(-xt/p) \right|
$$
\n
$$
= \frac{1}{p} \left| \sum_{i} \sum_{x \in P_i} f_{A'}(x) e(-xt/p) + \sum_{i} \sum_{x \in P_i} f_{A'}(x) (e(-xt/p) - e(-xt/p)) \right|
$$
\n
$$
\leq \frac{1}{p} \sum_{i} \left| \sum_{x \in P_i} f_{A'}(x) \right| + \frac{1}{p} \sum_{i} \sum_{x \in P_i} |f_{A'}(x)| \underbrace{e(-xt/p) - e(-xit/p)}_{\text{since } |t(x - x_i)| \leq \varepsilon p} |
$$

So

$$
\sum_{i} \left| \sum_{x \in P_i} f_{A'}(x) \right| \ge \frac{\alpha^2}{40} p.
$$

Since $f_{A'}$ has mean zero,

$$
\sum_{i} \left(\left| \sum_{x \in P_i} f_{A'}(x) \right| + \sum_{x \in P_i} f_{A'}(x) \right) \ge \frac{\alpha^2}{40} p,
$$

hence there exists i such that

$$
\left|\sum_{x \in P_i} f_{A'}(x)\right| + \sum_{x \in P_i} f_{A'}(x) \ge \frac{\alpha^2}{80} |P_i|
$$

and so

$$
\sum_{x \in P_i} f_{A'}(x) \ge \frac{\alpha^2}{160} |P_i|.
$$

 \Box

Definition 2.25 (Bohr set). Let $\Gamma \subseteq \widehat{G}$ $\Gamma \subseteq \widehat{G}$ $\Gamma \subseteq \widehat{G}$ and $\rho > 0$. By the *Bohr set* $B(\Gamma, \rho)$ we mean the set

 $B(\Gamma, \rho) = \{x \in G : |\gamma(x) - 1| < \rho \,\forall \gamma \in \Gamma\}.$

We call $|\Gamma|$ the *rank* of $B(\Gamma, \rho)$, and ρ its *width* or *radius*.

Example 2.26. When $G = \mathbb{F}_p^n$, then $B(\Gamma, \rho) = \langle \Gamma \rangle^{\perp}$ for all sufficiently small ρ .

Lemma 2.27. Assuming that:

- $\Gamma \subseteq \widehat{G}$ $\Gamma \subseteq \widehat{G}$ $\Gamma \subseteq \widehat{G}$ of size d
- $\rho > 0$

Then

$$
|B(\Gamma,\rho)|\geq \left(\frac{\rho}{8}\right)^d |G|.
$$

Proposition 2.28 (Bogolyubov in a general finite abelian group)**.** Assuming that:

• $A \subseteq G$ of density $\alpha > 0$

Then there exists $\Gamma \subseteq \widehat{G}$ $\Gamma \subseteq \widehat{G}$ $\Gamma \subseteq \widehat{G}$ of size at most $2\alpha^{-2}$ such that $A + A - A - A \supseteq B(\Gamma, \rho)$ $A + A - A - A \supseteq B(\Gamma, \rho)$ $A + A - A - A \supseteq B(\Gamma, \rho)$.

Proof. Re[c](#page-13-0)all $1_A * 1_A * 1_{-A} * 1_{-A}(x) = \sum_{\gamma \in \widehat{G}} |\widehat{1_A}(\gamma)|^4 \gamma(x)$ $1_A * 1_A * 1_{-A} * 1_{-A}(x) = \sum_{\gamma \in \widehat{G}} |\widehat{1_A}(\gamma)|^4 \gamma(x)$ $1_A * 1_A * 1_{-A} * 1_{-A}(x) = \sum_{\gamma \in \widehat{G}} |\widehat{1_A}(\gamma)|^4 \gamma(x)$.

Let $\Gamma \in \operatorname{Spec}_{\sqrt{\frac{\alpha}{2}}}(\mathbb{1}_A)$ $\Gamma \in \operatorname{Spec}_{\sqrt{\frac{\alpha}{2}}}(\mathbb{1}_A)$ $\Gamma \in \operatorname{Spec}_{\sqrt{\frac{\alpha}{2}}}(\mathbb{1}_A)$, and note that, for $x \in B(\Gamma, \frac{1}{2})$ $x \in B(\Gamma, \frac{1}{2})$ $x \in B(\Gamma, \frac{1}{2})$ and $\gamma \in \Gamma$, $\operatorname{Re}(\gamma(x)) > 0$. Hence, for $x \in$ $B\left(\Gamma,\frac{1}{2}\right),$ $B\left(\Gamma,\frac{1}{2}\right),$

$$
\operatorname{Re}\sum_{\gamma\in\widehat{G}}|\widehat{\mathbb{1}_A}(\gamma)|^4\gamma(x) = \operatorname{Re}\sum_{\gamma\in\Gamma}|\widehat{\mathbb{1}_A}(\gamma)|^4\gamma(x) + \operatorname{Re}\sum_{\gamma\notin\Gamma}|\widehat{\mathbb{1}_A}(\gamma)|^4\gamma(x)
$$

and

$$
\left|\text{Re}\sum_{\gamma\notin \Gamma}|\widehat{\mathbb{1}_A}(\gamma)|^4\gamma(x)\right|\leq \sup_{\gamma\notin \Gamma}|\widehat{\mathbb{1}_A}(\gamma)|^2\sum_{\gamma\notin \Gamma}|\widehat{\mathbb{1}_A}(\gamma)|^2\leq \left(\sqrt{\frac{\alpha}{2}}\cdot \alpha\right)^2\cdot \alpha=\frac{\alpha^4}{2}.\hspace{1.0cm}\square
$$

3 Probabilistic Tools

All probability spaces in this course will be finite.

Theorem 3.1 (Khintchine's inequality)**.** Assuming that: • $p \in [2,\infty)$ • X_1, X_2, \ldots, X_n independent random variables • $\mathbb{P}(X_i = x_i) = \frac{1}{2} = \mathbb{P}(X_i = -x_i)$ Then \parallel \parallel $\sum_{n=1}^{\infty}$ Ш Ш $=$ O $\sqrt{ }$ 1 2 $\left(\sum_{n=1}^{\infty}\right)$

$$
\left\| \sum_{i=1}^n X_i \right\|_{L^p(\mathbb{P})} = O\left(p^{\frac{1}{2}} \left(\sum_{i=1}^n \|X_i\|_{L^2(\mathbb{P})}^2 \right)^{\frac{1}{2}} \right).
$$

Proof. By nesting of norms, it suffices to prove the case $p = 2k$ for some $k \in \mathbb{N}$. Write $X = \sum_{i=1}^{n} X_i$, and assume $\sum_{i=1}^n \|X_i\|_{L^{\infty}(\mathbb{P})}^2 = 1$. Note that in fact $\sum_{i=1}^n \|X_i\|_{L^2(\mathbb{P})}^2 = \sum_{i=1}^n \|X_i\|_{L^{\infty}(\mathbb{P})}^2$, hence Lecture 11 $\sum_{i=1}^{n} ||X_i||_{L^2(\mathbb{P})}^2 = 1.$

By [Chernoff's inequality](#page-14-2) [\(Example 2.5\)](#page-14-3), for all $\theta > 0$ we have

$$
\mathbb{P}(|X| \geq \theta) \leq 4 \exp\left(-\frac{\theta^2}{4}\right),\,
$$

and so using the fact that $\mathbb{P}(|X| \le t) = \int_0^t \rho_X(s) \, ds$ we have

$$
||X||_{L^{2k}(\mathbb{P})}^{2k} = \int_0^\infty t^{2k} \rho_X(t) dt
$$

=
$$
\int_0^\infty 2kt^{2k-1} \mathbb{P}(|X| \ge t) dt
$$

$$
\le \underbrace{\int_0^\infty 8kt^{2k-1} \exp\left(-\frac{t^2}{4}\right)}_{=:I(K)} dt
$$

integration by parts

We shall show by induction on k that $I(K) \leq 2^{2k} \frac{(2k)^k}{4k}$ $\frac{2k}{4k}$. Indeed, when $k = 1$,

$$
\int_0^\infty t \exp\left(-\frac{t^2}{4}\right) dt = \left[-2\exp\left(-\frac{t^2}{4}\right)\right]_0^\infty = 2 \le 2.
$$

For $k > 1$, integrate by parts to find that

$$
I(K) = \int_0^\infty \underbrace{t^{2k-2}}_u \cdot \underbrace{t \exp\left(-\frac{t^2}{4}\right)}_v dt
$$

\n
$$
= \left[t^{2k-2} \cdot \left(-2 \exp\left(-\frac{t^2}{4}\right)\right)\right]_0^\infty - \int_0^\infty (2k-2)t^{2k-3} \left(-2 \exp\left(-\frac{t^2}{4}\right)\right) dt
$$

\n
$$
= 4(k-1) \int_0^\infty t^{2(k-1)-1} \exp\left(-\frac{t^2}{4}\right) dt
$$

\n
$$
= 4(k-1)I(K-1)
$$

\n
$$
\leq 4(k-1)2^{2(k-1)} \frac{(2(k-1))^{k-1}}{4(k-1)}
$$

\n
$$
\leq 2^{2k} \frac{(2k)^k}{4k}
$$

Corollary 3.2 (Rudin's Inequality). Let $F \subseteq \widehat{\mathbb{F}_2^n}$ be a linearly independent set and let $p \in$ [2, ∞ ∞ ∞). Then $\widehat{f} \in l^2(\Gamma)$, \parallel II II \mathbf{H} II √

$$
\left\| \sum_{\gamma \in \Gamma} \widehat{f}(\gamma) \gamma \right\|_{L^p(\mathbb{F}_2^n)} = O(\sqrt{p} \|\widehat{f}\|_{l^2(\Gamma)}).
$$

Corollary 3.3. Let $\Gamma \subseteq \widehat{\mathbb{F}_2^n}$ be a linearly independent set and let $p \in (1, 2]$. Then for all $f \in L^p(\mathbb{F}_2^n)$,

$$
\|\widehat{f}\|_{l^2(\Gamma)} = O\left(\sqrt{\frac{p}{p-1}}\|f\|_{L^p(\mathbb{F}_2^n)}\right).
$$

Proo[f](#page-13-0). Let $f \in L^p(\mathbb{F}_2^n)$ and write $g = \sum_{\gamma \in \Gamma} \widehat{f}(\gamma)\gamma$. Then

$$
\|\widehat{f}\|_{l^2(\Gamma)}^2 = \sum_{\gamma \in \Gamma} |\widehat{f}(\gamma)|^2
$$

= $\langle \widehat{f}, \widehat{g} \rangle_{l^2(\widehat{\mathbb{F}_2^n})}$
= $\langle f, g \rangle_{L^2(\mathbb{F}_2^n)}$ by Planch

erel's identity

 \Box

which is bounded above by $||f||_{L^p(\mathbb{F}_2^n)} ||g||_{L^{p'}(\mathbb{F}_2^n)}$ where $\frac{1}{p} + \frac{1}{p'} = 1$, using Hölder's inequality. By Rudin's inequality,

$$
||g||_{L^{p'}(\mathbb{F}_2^n)} = O\left(\sqrt{p'}||\widehat{g}||_{l^2(\Gamma)}\right) = O\left(\sqrt{\frac{p}{p-1}}||\widehat{f}||_{l^2(\Gamma)}\right).
$$

Recall that given $A \subseteq \mathbb{F}_2^n$ of density $\alpha > 0$, we had $|\operatorname{Spec}_{\rho}(\mathbb{1}_A) \leq \rho^{-2} \alpha^{-1}$ $|\operatorname{Spec}_{\rho}(\mathbb{1}_A) \leq \rho^{-2} \alpha^{-1}$ $|\operatorname{Spec}_{\rho}(\mathbb{1}_A) \leq \rho^{-2} \alpha^{-1}$. This is best possible as the example of a subspace shows. However, in this case the large spectrum is highly structured.

Theorem 3.4 (Special case of Chang's Theorem)**.** Assuming that:

- + $A \subseteq \mathbb{F}_2^n$ of density $\alpha > 0$
- $\rho > 0$

Then there exists $H \leq \widehat{\mathbb{F}_2^n}$ of dimension $O(\rho^{-2} \log \alpha^{-1})$ su[c](#page-12-1)h that $H \supseteq \text{Spec}_{\rho}(\mathbb{1}_A)$ $H \supseteq \text{Spec}_{\rho}(\mathbb{1}_A)$ $H \supseteq \text{Spec}_{\rho}(\mathbb{1}_A)$.

Proof. Let $\Gamma \subseteq \text{Spec}_{\rho}(\mathbb{1}_{A})$ $\Gamma \subseteq \text{Spec}_{\rho}(\mathbb{1}_{A})$ $\Gamma \subseteq \text{Spec}_{\rho}(\mathbb{1}_{A})$ be a maximal linearly independent set. Let $H = \langle \text{Spec}_{\rho}(\mathbb{1}_{A}) \rangle$. Clearly $dim(H) = |\Gamma|$. By [Corollary 3.3,](#page-26-0) for all $p \in (1, 2]$,

$$
(\rho\alpha)^2|\Gamma|\leq \sum_{\gamma\in\Gamma}|\widehat{\mathbb{1}_A}(\gamma)|^2=\|\widehat{\mathbb{1}_A}\|_{l^2(\Gamma)}^2=O\left(\frac{p}{p-1}\|\mathbb{1}_A\|_{L^p(\mathbb{F}_2^n)}^2\right),
$$

so

$$
|\Gamma| = O\left(\rho^{-2} \alpha^{-2} \alpha^{2/p} \frac{p}{p-1}\right).
$$

Set $p = 1 + (\log \alpha^{-1})^{-1}$ to get $|\Gamma| = O(\rho^{-2} \alpha^{-2} (\alpha^2 \cdot e^2)(\log \alpha^{-1} + 1)).$

 \Box

Definition 3.5 (Dissociated). Let G be a finite abelian group. We say $S \subseteq G$ is *dissociated* if $\sum_{s \in S} \varepsilon_s s = 0$ for $\varepsilon \in \{-1, 0, 1\}^{|S|}$, then $\varepsilon \equiv 0$.

Lecture 12 Clearly, if $G = \mathbb{F}_2^n$, then $S \subseteq G$ is [dissociated](#page-27-0) if and only if it is linearly independent.

Theorem 3.6 (Chang's Theorem)**.** Assuming that:

- \bullet *G* a finite abelian group
- $A \subseteq G$ be of density $\alpha > 0$
- $\Lambda \supseteq \text{Spec}_{\rho}(\mathbb{1}_A)$ $\Lambda \supseteq \text{Spec}_{\rho}(\mathbb{1}_A)$ $\Lambda \supseteq \text{Spec}_{\rho}(\mathbb{1}_A)$ is [dissociated](#page-27-0)

Then
$$
|\Lambda| = O(\rho^{-2} \log \alpha^{-1})
$$
.

We may bootstrap [Khintchine's inequality](#page-25-1) to obtain the following:

Theorem 3.7 (Marcinkiewicz-Zygmund)**.** Assuming that:

•
$$
p \in [2, \infty)
$$

• $X_1, X_2, \ldots, X_n \in \mathbb{P}(\mathbb{P})$ independent random variables

•
$$
\mathbb{E} \sum_{i=1}^{n} X_i = 0
$$

Then

$$
\left\| \sum_{i=1}^n X_i \right\|_{L^p(\mathbb{P})} = O\left(p^{\frac{1}{2}} \left\| \sum_{i=1}^n |X_i|^2 \right\|_{L^{p/2}(\mathbb{P})}^{\frac{1}{2}} \right).
$$

Proof. First assume the distribution of the X_i 's is symmetric, i.e. $\mathbb{P}(X_i = a) = \mathbb{P}(X_i = -a)$ for all $a \in \mathbb{R}$. Partition the probability space Ω into sets $\Omega_1, \Omega_2, \ldots, \Omega_M$, write \mathbb{P}_j for the induced measure on Ω_j such that all X_i 's are symmetric and take at most 2 values. By [Khintchine's inequality,](#page-25-1) for each $j \in [M],$

$$
\left\| \sum_{i=1}^{n} X_{i} \right\|_{L^{p}(\mathbb{P}_{j})}^{p} = O\left(p^{p/2} \left(\sum_{i=1}^{n} \|X_{i}\|_{L^{2}(\mathbb{P}_{j})}^{2} \right)^{p/2} \right)
$$

$$
= O\left(p^{p/2} \left\| \sum_{i=1}^{n} |X_{i}|^{2} \right\|_{L^{p/2}(\mathbb{P}_{j})}^{p/2} \right)
$$

so summing over all j and taking p-th roots gives the symmetric case. Now suppose the X_i 's are arbitrary, and let Y_1, \ldots, Y_n be such that $Y_i \sim X_i$ and $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n$ are all independent. Applying the symmetric case to $X_i - Y_i$,

$$
\left\| \sum_{i=1}^{n} (X_i - Y_i) \right\|_{L^p(\mathbb{P} \times \mathbb{P})} = O\left(p^{\frac{1}{2}} \left\| \sum_{i=1}^{n} |X_i - Y_i|^2 \right\|_{L^{p/2}(\mathbb{P} \times \mathbb{P})}^{\frac{1}{2}} \right)
$$

$$
= O\left(p^{\frac{1}{2}} \left\| \sum_{i=1}^{n} |X_i - Y_i|^2 \right\|_{L^{p/2}(\mathbb{P})}^{\frac{1}{2}} \right)
$$

But then

$$
\left\| \sum_{i=1}^{n} X_{i} \right\|_{L^{p}(\mathbb{P})} = \left\| \sum_{i=1}^{n} X_{i} - \mathbb{E}^{Y} \sum_{i=1}^{n} Y_{i} \right\|_{L^{p}(\mathbb{P})}
$$

\n
$$
= \mathbb{E}^{X} \left| \sum_{i} X_{i} - \mathbb{E}^{Y} \sum_{i} Y_{i} \right|^{p}
$$

\n
$$
= \mathbb{E}^{X} \left| \sum_{i} X_{i} - \mathbb{E}^{Y} \sum_{i} Y_{i} \right|^{p}
$$

\n
$$
\leq \mathbb{E}^{X} \mathbb{E}^{Y} \left| \sum_{i} (X_{i} - Y_{i}) \right|^{p}
$$

\n
$$
= \left\| \sum_{i} (X_{i} - Y_{i}) \right\|_{L^{p}(\mathbb{P} \times \mathbb{P})}^{p}
$$
 by Jensen say

concluding the proof.

Theorem 3.8 (Croot-Sisask almost periodicity)**.** Assuming that:

- \bullet *G* a finite abelian group
- $\varepsilon > 0$
- $p \in [2,\infty)$
- $A, B \subseteq G$ are such that $|A + B| \le K|A|$
- $f: G \to \mathbb{C}$

Then there exists $b \in B$ and a set $X \subseteq B - b$ such that $|X| \geq 2^{-1} K^{-O(\varepsilon^{-2}p)} |B|$ and

$$
\|\tau_x f * \mu_A - f * \mu_A\|_{L^p(G)} \le \varepsilon \|f\|_{L^p(G)} \qquad \forall x \in X,
$$

where $\tau_x g(y) = g(y + x)$ for all $y \in G$, and as a reminder, μ_A is the [characteristic measure](#page-13-1) of A.

Proof. The main idea is to approximate

$$
f * \mu_A(y) = \mathbb{E}_x f(y - x) \mu_A(x) = \mathbb{E}_{x \in A} f(y - x)
$$

by $\frac{1}{m}\sum_{i=1}^m f(y-z_i)$, where z_i are sampled independently and uniformly from A, and m is to be chosen later.

For each $y \in G$, define $Z_i(y) = \tau_{-zi}f(y) - f * \mu_A(y)$. For each $y \in G$, these are independent random variables with mean 0, so by [Marcinkiewicz-Zygmund,](#page-27-1)

$$
\left\| \sum_{i=1}^{m} Z_i(y) \right\|_{L^p(\mathbb{P})}^p = O\left(p^{p/2} \left\| \sum_{i=1}^{m} |Z_i(y)|^2 \right\|_{L^{p/2}(\mathbb{P})}^{p/2} \right)
$$

=
$$
O\left(p^{p/2} \mathbb{E}_{(z_1, ..., z_m) \in A^m} \left| \sum_{i=1}^{m} |Z_i(y)|^2 \right|^{p/2} \right)
$$

By Hölder with $\frac{1}{p'} + \frac{2}{p} = 1$, we get

$$
\left| \sum_{i=1}^{m} |Z_i(y)|^2 \right|^{p/2} \le \left(\sum_{i=1}^{m} 1^{p'} \right)^{\frac{1}{p'} \cdot \frac{p}{2}} \left(\sum_{i=1}^{m} |Z_i(y)|^{2 \cdot p/2} \right)^{\frac{2}{p} \cdot \frac{p}{2}}
$$

$$
\le \left(\sum_{i=1}^{m} 1^{p'} \right)^{\frac{p}{2} - 1} \left(\sum_{i=1}^{m} |Z_i(y)|^{2 \cdot p/2} \right)^{\frac{2}{p} \cdot \frac{p}{2}}
$$

$$
= m^{p/2 - 1} \sum_{i=1}^{m} |Z_i(y)|^p
$$

so

$$
\left\| \sum_{i=1}^m Z_i(y) \right\|_{L^p(\mathbb{P})}^p = O\left(p^{p/2} m^{p/2 - 1} \mathbb{E}_{(z_1, ..., z_m) \in A^m} \sum_{i=1}^m |Z_i(y)|^p \right).
$$

Summing over all $y \in G$, we have

$$
\mathbb{E}_{y \in G} \left\| \sum_{i=1}^m Z_i(y) \right\|_{L^p(\mathbb{P})}^p = O\left(p^{p/2} m^{p/2 - 1} \mathbb{E}_{(z_1, ..., z_m) \in A^m} \sum_{i=1}^m \mathbb{E}_{y \in G} |Z_i(y)|^p \right)
$$

with

$$
(\mathbb{E}_{y \in G} |Z_i(y)|^p)^{\frac{1}{p}} = ||Z_i||_{L^p(G)}
$$

\n
$$
= ||\tau_{-z_i}f - f * \mu_A||_{L^p(G)}
$$

\n
$$
\leq ||\tau_{-z_i}f||_{L^p(G)} + ||f * \mu_A||_{L^p(G)}
$$

\n
$$
\leq ||f||_{L^p(G)} + ||f||_{L^q(G)} ||\mu_A||_{L^1(G)}
$$

\n
$$
\leq 2||f||_{L^p(G)}
$$

Lecture 13 by Young / Hölder $(\|f * g\|_{L^r(G)} \le \|f\|_{L^p(G)} \|g\|_{L^q(G)}$ where $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$.

So we have

$$
\mathbb{E}_{(z_1,\ldots,z_m)\in A^m}\mathbb{E}_{y\in G}\left|\sum_{i=1}^m Z_i(y)\right|^p=O\left(p^{p/2}m^{p/2-1}\sum_{i=1}^m (2\|f\|_{L^p(G)})^p\right)=O((4p)^{p/2}m^{p/2}\|f\|_{L^p(G)}^p).
$$

Choose $m = O(\varepsilon^{-2}p)$ so that the RHS is at most $(\frac{\varepsilon}{4}||f||_{L^p(G)})^p$. whence

$$
\mathbb{E}_{(z_1,\ldots,z_m)\in A^m}\mathbb{E}_{y\in G}\left|\frac{1}{m}\sum_{i=1}^m\tau_{-zi}f(y)-f*\mu_A(y)\right|^p=O((4p)^{p/2}m^{p/2}\|f\|_{L^p(G)}^p)=\left(\frac{\varepsilon}{4}\|f\|_{L^p(G)}\right)^p.
$$

Write

$$
L = \left\{ z = (z_1, \ldots, z_m) \in A^m : (*) \leq \left(\frac{\varepsilon}{2} ||f||_{L^p(G)} \right)^p \right\}.
$$

By Markov inequality, since

$$
\mathbb{E}(*) \leq \left(\frac{\varepsilon}{4} \|f\|_{L^p(G)}\right)^p = 2^{-p} \left(\frac{\varepsilon}{2} \|f\|_{L^p(G)}\right)^p,
$$

we have

$$
\frac{|A^m \setminus L|}{|A^m|} = \mathbb{P}\left(\left(\ast\right) \ge \left(\frac{\varepsilon}{2} \|f\|_{L^p(G)}\right)^p\right) \le \mathbb{P}(\left(\ast\right) \ge 2^p \mathbb{E}(\ast)) \le 2^{-p}
$$

so $|L| \ge (1 - \frac{1}{2^p}) |A|^m \ge \frac{1}{2} |A|^m$. Let

$$
D=\{\underbrace{(b,b,\ldots,b)}_m : b\in B\}.
$$

Now $L + D \subseteq (A + B)^m$ $L + D \subseteq (A + B)^m$ $L + D \subseteq (A + B)^m$, whence

$$
|L+D|\leq |A+B|^m\leq K^m|A|^m\leq 2K^m|L|.
$$

By [Lemma 1.17,](#page-6-1)

$$
E(L, D) \ge \frac{|L|^2|D|^2}{|L+D|} \ge \frac{1}{2}K^{-m}|D|^2|L|
$$

so the[r](#page-7-1)e are at least $\frac{|D|^2}{2K^m}$ pairs $(d_1, d_2) \in D \times D$ such that $r_{L-L}(d_2 - d_1) > 0$. In particular, there exists $b \in ub$ and $X \subseteq B - b$ of size $|X| \ge \frac{|D|}{2K^m} = \frac{|B|}{2K^m}$ such that for all $x \in X$, there exists $l_2(x) \in L$ such that for all $i \in [m], l_1(x)_{i} - l_2(x)_{i} = x$. But then for each $x \in X$, by the triangle inequality,

$$
\|\tau_{-x}f * \mu_A - f * \mu_A\|_{L^p(G)} \le \left\|\tau_{-x}f * \mu_A - \tau_{-x}\left(\frac{1}{m}\sum_{i=1}^m \tau_{-l_2(x)_i}f\right)\right\|_{L^p(G)}
$$

+
$$
\left\|\tau_{-x}\left(\frac{1}{m}\sum_{i=1}^m \tau_{-l_2(x_i)}f\right) - f * \mu_A\right\|_{L^p(G)}
$$

=
$$
\left\|f * \mu_A - \frac{1}{m}\sum_{i=1}^m \tau_{-l_2(x)_i}f\right\|_{L^p(G)}
$$

+
$$
\left\|\frac{1}{m}\sum_{i=1}^m \tau_{-x-l_2(x)_i}f - f * \mu_A\right\|_{L^p(G)}
$$

$$
\le 2 \cdot \frac{\varepsilon}{2} \|f\|_{L^p(G)}
$$

by definion of L .

Theorem 3.9 (Bogolyubov again, after Sanders)**.** Assuming that: • $A \subseteq \mathbb{F}_p^n$ of density $\alpha > 0$

Then there exists a subspace $V \leq \mathbb{F}_p^n$ of codimension $O(\log^4 \alpha^{-1})$ such tht $V \subseteq A + A - A - A$ $V \subseteq A + A - A - A$ $V \subseteq A + A - A - A$.

Almost periodicity is also a key ingredient in recent work of Kelley and Meka, showing that any $A \subseteq [N]$ containing no non-trivial 3 term arithmetic progressions has size $|A| \leq \exp(-C \log^{\frac{1}{11}} N)N$.

 \Box

4 Further Topics

In \mathbb{F}_p^n , we can do much better.

Theorem 4.1 (Ellenberg-Gijswijt, following Croot-Lev-Pach)**.** Assuming that:

- $A \subseteq \mathbb{F}_3^n$ contains no non-trivial 3 term arithmetic progressions

Then $|A| = o(2.756)^n$.

Notation. Let M_n be the set of monomials in x_1, \ldots, x_2 whose degree in each variable is at most 2. Let V_n be the vector space over \mathbb{F}_3 whose basis is M_n . For any $d \in [0, 2n]$, write M_n^d for the set of monomials in M_n of (total) degree at most d, and V_n^d for the corresponding vector space. Set $m_d = \dim(V_n^d) = |M_n^d|$.

Lemma 4.2. Assuming that:

- $A \subseteq \mathbb{F}_3^n$
- $P \in V_n^d$ $P \in V_n^d$ $P \in V_n^d$ is a polynomial
- $P(a + a') = 0$ for all $a \neq a' \in A$

Then

$$
|\{a \in A : P(2a) \neq 0\}| \leq 2m_{d/2}.
$$

Lecture 14

Proof. Every $P \in V_n^d$ $P \in V_n^d$ $P \in V_n^d$ can be written as a linear combination of monomials in M_n^d M_n^d , so

$$
P(x + y) = \sum_{\substack{m,m' \in M_n^d \\ \deg(mm') \le d}} c_{m,m'} m(x) m'(y)
$$

for some coefficients $c_{m,m'}$. Clearly at least one of m, m' must have degree $\leq \frac{d}{2}$, whence

$$
P(x + y) = \sum_{m \in M_n^{d/2}} m(x) F_m(y) + \sum_{m' \in M_n^{d/2}} m'(y) G_{m'}(x),
$$

for some families of polynomials $(F_m)_{m \in M_n^{d/2}}$ $(F_m)_{m \in M_n^{d/2}}$ $(F_m)_{m \in M_n^{d/2}}$, $(G_{m'})_{m' \in M_n^{d/2}}$.

Viewing $(P(x+y))_{x,y\in A}$ as a $|A| \times |A|$ -matrix C, we see that C can be written as the sum of at most $2m_{d/2}$ $2m_{d/2}$ $2m_{d/2}$ matrices, each of which has rank 1. Thus rank $(C) \leq 2m_{d/2}$. But by assumption, C is a diagonal matrix whose rank equals $|\{a \in A : P(a + a) \neq 0\}|$. \Box **Proposition 4.3.** Assuming that:

- A $\subseteq {\mathbb F}_3^n$ a set containing no non-trivial 3 term arithmetic progressions
- Then $|A| \leq 3m_{2n/3}$ $|A| \leq 3m_{2n/3}$ $|A| \leq 3m_{2n/3}$.

Proof. Let $d \in [0, 2n]$ be an integer to be determined later. Let W be the space of polynomials in V_n^d V_n^d that vanish on $(2 \cdot A)^c$. We have

$$
\dim(W) \ge \dim(V_n^d) - |(2 \cdot A)^c| = m_d - (3^n - |A|).
$$

We claim that there exists $P \in W$ such that $|\text{supp}(P)| \ge \dim(W)$. Indeed, pick $P \in W$ with maximal support. If $|\text{supp}(P)| < \dim(W)$, then there would be a non-zero polynomial $Q \in W$ vanishing on $supp(P)$, in which case $supp(P + Q) \supsetneq supp(P)$, contradicting the choice of P.

Now by assumption,

$$
\{a + a' : a \neq a' \in A\} \cap 2 \cdot A = \emptyset.
$$

So any polynomial that vanishes on $(2 \cdot A)^c$ vanishes on $\{a + a' : a \neq a' \in A\}$. By [Lemma 4.2](#page-32-2) we now have that,

$$
|A| - (3^n - m_d) = m_d - (3^n - |A|)
$$

\n
$$
\leq \dim(W)
$$

\n
$$
\leq |\sup(p)|
$$

\n
$$
= |\{x \in \mathbb{F}_3^n : P(x) \neq 0\}|
$$

\n
$$
= |\{a \in A : P(2a) \neq 0\}|
$$

\n
$$
\leq 2m_{d/2}
$$

Hence $|A| \geq 3^n - m_d + 2m_{d/2}$ $|A| \geq 3^n - m_d + 2m_{d/2}$ $|A| \geq 3^n - m_d + 2m_{d/2}$. But the monomials in $M_n \setminus M_n^d$ $M_n \setminus M_n^d$ are in bijection with the ones in M_{2n-d} M_{2n-d} via $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mapsto x_1^{2-\alpha_1} \cdots x_n^{2-\alpha_n}$ $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mapsto x_1^{2-\alpha_1} \cdots x_n^{2-\alpha_n}$ $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mapsto x_1^{2-\alpha_1} \cdots x_n^{2-\alpha_n}$, whence $3^n - m_d = m_{2n-d}$. Thus setting $d = \frac{4n}{3}$, we have $|A| \leq m_{2n/3} + 2m_{2n/3} = 3m_{2n/3}.$ $|A| \leq m_{2n/3} + 2m_{2n/3} = 3m_{2n/3}.$ $|A| \leq m_{2n/3} + 2m_{2n/3} = 3m_{2n/3}.$

You will prove [Theorem 4.1](#page-32-3) on Example Sheet 3.

We do not have at present a comparable bound for 4 term arithmetic progressions. Fourier techniques also fail.

Example 4.4. Recall from [Lemma 2.18](#page-18-2) that given $A \subseteq G$,

$$
|T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^3| \ge \sup_{\gamma \neq 1} |\widehat{\mathbb{1}_A}(\gamma)|.
$$

But it is impossible to bound

$$
T_4(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^4 = \mathbb{E}_{x \in d} \mathbb{1}_A(x) \mathbb{1}_A(x+d) \mathbb{1}_A(x+2d) \mathbb{1}_A(x+3d) - \alpha^4
$$

by $\sup_{\gamma\neq 1} |\widehat{\mathbb{1}_A}(\gamma)|$. Indeed, [c](#page-13-0)onsider $Q = \{x \in \mathbb{F}_p^n : x \cdot x = 0\}$. By Problem 11(ii) on Sheet 1,

$$
\frac{|Q|}{p^n} = \frac{1}{p} + O(p^{-n/2})
$$

and

$$
\sup_{t \neq 0} |\widehat{\mathbb{1}_Q}(t)| = O(p^{-n/2}).
$$

But given a 3 term arithmetic progression $x, x + d, x + 2d \in Q$, by the identity

$$
x^{2} - 3(x + d)^{2} + 3(x + 2d)^{2} - (x + 3d)^{2} = 0 \qquad \forall x, d,
$$

 $x + 3d$ automatically lies in Q , so

$$
T_4(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) = T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) = \left(\frac{1}{p}\right)^3 + O(p^{-n/2})
$$

which is not close to $\left(\frac{1}{p}\right)^4$.

Definition 4.5. Given $f: G \to \mathbb{C}$, define its U^2 -norm by the formula

$$
||f||_{U^{2}(G)}^{4} = \mathbb{E}_{x,a,b \in G} f(x) \overline{f(x+a)f(x+b)} f(x+a+b).
$$

Problem 1(i) on Sheet 2 showed that $||f||_{U^2(G)} = ||f||_{l^4(\widehat{G})}$ $||f||_{U^2(G)} = ||f||_{l^4(\widehat{G})}$ $||f||_{U^2(G)} = ||f||_{l^4(\widehat{G})}$ $||f||_{U^2(G)} = ||f||_{l^4(\widehat{G})}$ $||f||_{U^2(G)} = ||f||_{l^4(\widehat{G})}$, so this is indeed a norm.

Problem $1(ii)$ asserted the following:

Lemma 4.6. Assuming that:

•
$$
f_1, f_2, f_3 : G \to \mathbb{C}
$$

Then

$$
|T_3(f_1, f_2, f_3)| \le \min_{i \in [3]} ||f_i||_{U^2(G)} \cdot \prod_{j \neq i} ||f_j||_{L^{\infty}(G)}.
$$

Note that

$$
\sup_{\gamma \in \widehat{G}} |\widehat{f}(\gamma)|^4 \leq \sum_{\gamma \in \widehat{G}} |\widehat{f}(\gamma)|^4 \leq \sup_{\gamma \in \widehat{G}} |\widehat{f}(\gamma)|^2 \sum_{\gamma \in \widehat{G}} |\widehat{f}(\gamma)|^2
$$

and thus by [Parseval's identity,](#page-14-0)

$$
||f||_{U^{2}(G)}^{4} = ||\widehat{f}||_{L^{\infty}(\widehat{G})}^{4} \leq ||\widehat{f}||_{L^{\infty}(\widehat{G})}^{2} ||f||_{L^{2}(G)}^{2}.
$$

Lecture 15

Hence

$$
\|\widehat{f}\|_{l^{\infty}(\widehat{G})} \leq \|\widehat{f}\|_{l^{4}(\widehat{G})} = \|f\|_{U^{2}(G)} \leq \|\widehat{f}\|_{l^{\infty}(\widehat{G})}^{\frac{1}{2}} \|f\|_{L^{2}(G)}^{\frac{1}{2}}.
$$

Moreover, i[f](#page-13-3) $f = f_A A = \mathbb{1}_A - \alpha$, then

$$
T_3(f, f, f) = T_3(\mathbb{1}_A - \alpha, \mathbb{1}_A - \alpha, \mathbb{1}_A - \alpha) = T_3(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^3.
$$

We may therefore reformulate the first step in the proof of [Meshulam's Theorem](#page-19-0) as follows: if $p^n \geq$ $2\alpha^{-2}$, then by [Section 4,](#page-34-0)

$$
\frac{\alpha^3}{2} \le \left| \frac{\alpha}{p^n} - \alpha^3 \right| = |T_3(f_A A, f_A A, f_A A)| \le ||f_A A||_{U^2(\mathbb{F}_p^n)}.
$$

It remains to show that i[f](#page-13-3) $||f_A A||_{U^2(\mathbb{F}_p^n)}$ is non-trivial, then there exists a subspace $V \leq \mathbb{F}_p^n$ of bounded codimension on which A has increased density.

Theorem 4.7 (U^2 Inverse Theorem). Assuming that:

• $f: \mathbb{F}_p^n \to \mathbb{C}$

•
$$
||f||_{L^{\infty}(\mathbb{F}_p^n)} \leq 1
$$

- $\delta > 1$
- $||f||_{U^2(\mathbb{F}_p^n)} \geq \delta$

Then there exists $b \in \mathbb{F}_p^n$ such that

$$
|\mathbb{E}_{x \in \mathbb{F}_p^n} f(x)e(-x \cdot b/p)| \ge \delta^2.
$$

In other words, $|\langle f, \phi \rangle| \geq \delta^2$ for $\phi(x) = e(-x \cdot b/p)$ and we say "f correlates with a linear phase function".

Proof. We have seen that

$$
||f||_{U^{2}(\mathbb{F}_{p}^{n})}^{2} \leq ||\widehat{f}||_{l^{\infty}(\widehat{\mathbb{F}_{p}^{n}})} ||f||_{L^{2}(\mathbb{F}_{p}^{n})} \leq ||\widehat{f}||_{l^{\infty}(\widehat{\mathbb{F}_{p}^{n}})},
$$

$$
\delta^{2} \leq ||\widehat{f}||_{l^{\infty}(\widehat{\mathbb{F}_{p}^{n}})} = \sup_{t \in \widehat{\mathbb{F}_{p}^{n}}} |\mathbb{E}_{x}f(x)e(-x \cdot t/p)|.
$$

so

Definition 4.8 (U^3 norm). Given $f: G \to \mathbb{C}$, define its U^3 *norm* by

$$
||f||_{U^{3}(G)}^{8} := \mathbb{E}_{\epsilon^{x,a,b,c}} f(x) \overline{f(x+a)f(x+b)f(x+c)}
$$

$$
f(x+a+b)f(x+b+c)f(x+a+c)\overline{f(x+a+b+c)}
$$

$$
= \mathbb{E}_{x,h_{1},h_{2},h_{3} \in G} \prod_{\epsilon \in \{0,1\}^{3}} C^{|\epsilon|} f(x+\epsilon \cdot \mathbf{h})
$$

where $\mathcal{C}g(x) = \overline{g(x)}$ and $|\varepsilon|$ denotes the number of ones in ε .

It is easy to verify that $\mathbb{E}_{c \in G} \|\Delta_c f\|_{U^2(G)}^4$ $\mathbb{E}_{c \in G} \|\Delta_c f\|_{U^2(G)}^4$ $\mathbb{E}_{c \in G} \|\Delta_c f\|_{U^2(G)}^4$ where $\Delta_c g(x) = g(x)\overline{g(x+c)}$.

Definition 4.9 (U^3 inner product). Given functions $f_{\varepsilon}: G \to \mathbb{C}$ for $\varepsilon \in \{0,1\}^3$, define their U 3 *inner product* by

$$
\langle (f_{\varepsilon})_{\varepsilon \in \{0,1\}^3} \rangle_{U^3(G)} = \mathbb{E}_{x,h_1,h_2,h_3 \in G} \prod_{\varepsilon \in \{0,1\}^3} C^{|\varepsilon|} f_{\varepsilon}(x + \varepsilon \cdot \mathbf{h}).
$$

Observe that $\langle f, f, f, f, f, f, f \rangle_{U^3(G)} = ||f||_{U^3(G)}^8$.

Lemma 4.10 (Gowers–Cauchy–Schwarz Inequality)**.** Assuming that:

• $f_{\varepsilon}: G \to \mathbb{C}, \, \varepsilon \in \{0,1\}^3$

Then

$$
|\langle (f_{\varepsilon})_{\varepsilon \in \{0,1\}^3} \rangle_{U^3(G)} \leq \prod_{\varepsilon \in \{0,1\}^3} \|f_{\varepsilon}\|_{U^3(G)}.
$$

Setting $f_{\varepsilon} = f$ for $\varepsilon \in \{0,1\}^2 \times \{0\}$ and $f_{\varepsilon} = 1$ otherwise, it follows that $||f||^4_{U^2(G)} \leq ||f||_{U^3(G)}^4$ hence $||f||_{U^2(G)} \leq ||f||_{U^3(G)}.$

Proposition 4.11. Assuming that:

•
$$
f_1, f_2, f_3, f_4 : \mathbb{F}_5^n \to \mathbb{C}
$$

Then

$$
T_4(f_1, f_2, f_3, f_4) \le \min_{i \in [4]} \|f_i\|_{U^3(G)} \prod_{j \neq i} \|f_j\|_{L^\infty(\mathbb{F}_5^n)}.
$$

Proof. We additionally assume $f = f_1 = f_2 = f_3 = f_4$ to make the proof easier to follow, but the same ideas are used for the general case. We additionally assume $||f||_{L^{\infty}(\mathbb{F}_5^n)} \leq 1$, by rescaling, since the inequality is homogeneous.

Reparametrising, we have

$$
T_4(f, f, f, f) = \mathbb{E}_{a,b,c,d \in \mathbb{F}_5^n} f(3a + 2b + c) f(2a + b - d) f(a - c - 2d) f(-b - 2c - 3d)
$$

\n
$$
|T_4(f, f, f, f)|^8 \le \left(\mathbb{E}_{a,b,c}|\mathbb{E}_{d}f(2a + b - d)f(a - c - 2d)f(-b - 2c - 3d)|^2\right)^4
$$

\n
$$
= \left(\mathbb{E}_{d,d'}\mathbb{E}_{a,b}f(2a + b + d)\overline{f(2a + b - d')}
$$

\n
$$
\mathbb{E}_c f(a - c - 2d)\overline{f(a - c - 2d')}f(-b - 2c - 3d)\overline{f(-b - 2c - 3d')}^4\right)^4
$$

\n
$$
\le \left(\mathbb{E}_{d,d'}\mathbb{E}_{a,b}|\mathbb{E}_c f(a - c - 2d)\overline{f(a - c - 2d')}f(-b - 2c - 3d)\overline{f(-b - 2c - 3d')}^2\right)^2
$$

\n
$$
= \left(\mathbb{E}_{c,c',d,d'}\mathbb{E}_{a}f(a - c - 2d)\overline{f(a - c' - 2d)}f(a - c - 2d')f(a - c' - 2d')
$$

\n
$$
\mathbb{E}_b f(-b - 2c - 3d)\overline{f(-b - 2c' - 3d)}f(-b - 2c - 3d')f(-b - 2c' - 3d')\right)^2
$$

\n
$$
\le \mathbb{E}_{c,c',d,d',a}|\mathbb{E}_b f(-b - 2c - 3d)\overline{f(-b - 2c' - 3d)}f(-b - 2c' - 3d)}f(-b - 2c' - 3d')|^{2}
$$

\n
$$
= \mathbb{E}_{b,b',c,c',d,d'}f(-b - 2c - 3d')f(-b' - 2c - 3d')f(-b' - 2c' - 3d')f(-b' - 2c' - 3d')
$$

Lecture 16

Theorem 4.12 (Szemerédi's Theorem for 4-APs)**.** Assuming that:

- $A \subseteq \mathbb{F}_5^n$ a set containing no non-trivial 4 term arithmetic progressions Then $|A| = o(5^n)$.

Idea: By [Proposition 4.11](#page-37-0) with $f = f_A = \mathbb{1}_A - \alpha$ $f = f_A = \mathbb{1}_A - \alpha$,

$$
T_4(\underbrace{\mathbb{1}_A}_{f_A+\alpha}, \underbrace{\mathbb{1}_A}_{f_A+\alpha}, \underbrace{\mathbb{1}_A}_{f_A+\alpha}, \underbrace{\mathbb{1}_A}_{f_A+\alpha}) - \alpha^4 = T_4(f_A, f_A, f_A, f_A) + \cdots
$$

where \cdots consists o[f](#page-13-3) 14 other terms in which between one and three of the inputs are equal to f_A .

These are controlled by

$$
||f_A||_{U^2(\mathbb{F}_5^n)} \leq ||f_A||_{U^3(G)},
$$

whence

$$
|T_4(\mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A, \mathbb{1}_A) - \alpha^4| \le 15 ||f_A||_{U^3(G)}.
$$

So i[f](#page-13-3) A contains no non-trivial 4 term arithmetic progressions and $5^{n} > 2\alpha^{-3}$, then $||f_A||_{U^3(G)} \ge \frac{\alpha^4}{30}$.

What can we say about functions with large U^3 norm?

Example 4.13. Let M be an $n \times n$ symmetric matrix with entries in \mathbb{F}_5 . Then $f(x) =$ $e(x^{\top} M x/5)$ satisfies $||f||_{U^{3}(G)} = 1.$

Theorem 4.14 (U^3 inverse theorem). Assuming that:

- $f: \mathbb{F}_5^n \to \mathbb{C}$
- $||f||_{L^{\infty}(\mathbb{F}_5^n)} \leq 1$
- $||f||_{U^3(G)} \geq \delta$ for some $\delta > 0$

Then there exists a symmetric $n \times n$ matrix M with entries in \mathbb{F}_5 and $b \in \mathbb{F}_5^n$ such that

$$
|\mathbb{E}_x f(x)e((x^\top M x + b^\top x)/p)| \ge c(\delta)
$$

where $c(\delta)$ is a polynomial in δ . In other words, $|\langle f, \phi \rangle| \geq c(\delta)$ for $\phi(x) = e((x^\top M x + b^\top x)/p)$ and we say "f correlates with a quadratic phase function".

Proof (sketch). Let $\Delta_h f(x)$ denote $f(x) \overline{f(x+h)}$.

 $||f||_{U^{3}(G)} = (\mathbb{E}_{h} || \Delta_{h} f||_{U^{2}}^{4})^{\frac{1}{8}}.$

STEP 1: Weak linearity. See reference.

STEP 2: Strong linearity. We will spend the rest of the lecture discussing this in detail.

STEP 3: Symmetry argument. Problem 8 on Sheet 3.

STEP 4: Integration step. Problem 9 on Sheet 3.

STEP 1: If $||f||_{U^{3}(G)}^{8} = \mathbb{E}_{h} ||\Delta_{h}||_{U^{2}}^{4} \geq \delta^{8}$, then for at least a $\frac{\delta^{8}}{2}$ ⁵⁸-proportion of $h \in \mathbb{F}_5^n$, $\frac{\delta^8}{2} \leq ||\Delta_h f||_{U^2}^4 \leq$ $\|\widehat{\Delta_h f}\|_{l^{\infty}}^2$ $\|\widehat{\Delta_h f}\|_{l^{\infty}}^2$ $\|\widehat{\Delta_h f}\|_{l^{\infty}}^2$. So for each such $h \in \mathbb{F}_5^n$, there exists t_h such that $|\widehat{\Delta_h f}(t_h)|^2 \geq \frac{\delta^8}{2}$ $\frac{6}{2}$.

Proposition 4.15. Assuming that:

• $f: \mathbb{F}_5^n \to \mathbb{C}$

- • $||f||_{\infty} \leq 1$
- $||f||_{U^3(G)} \ge \delta$
- $|\mathbb{F}_5^n| = \Omega_\delta(1)$

Then there exists $S \subseteq \mathbb{F}_5^n$ with $|S| = \Omega_\delta(|\mathbb{F}_5^n|)$ and a fun[c](#page-12-1)tion $\phi: S \to \widehat{\mathbb{F}_5^n}$ such that

- (i) $|\widehat{\Delta_h f}(\phi(h))| = \Omega_\delta(1);$ $|\widehat{\Delta_h f}(\phi(h))| = \Omega_\delta(1);$ $|\widehat{\Delta_h f}(\phi(h))| = \Omega_\delta(1);$
- (ii) There are at least $\Omega_{\delta}(|\mathbb{F}_{5}^{n}|^{3})$ quadruples $(s_1, s_2, s_3, s_4) \in S^4$ such that $s_1 + s_2 = s_3 + s_4$ and $\phi(s_1) + \phi(s_2) + \phi(s_4)$.

STEP 2: If S and ϕ are as above, then there is a linear fun[c](#page-12-1)tion $\psi : \mathbb{F}_5^n \to \widehat{\mathbb{F}_5^n}$ which coincides with ϕ for many elements of S.

Proposition 4.16. Assuming that:

• S and ϕ given as in [Proposition 4.15](#page-38-0)

Then there exists $n \times n$ matrix M with entries in \mathbb{F}_5 and $b \in \mathbb{F}_5^n$ such that $\psi(x) = Mx + b$ $(\psi : \mathbb{F}_5^n \to \widehat{\mathbb{F}_5^n})$ satisfies $\psi(x) = \phi(x)$ for $\Omega_\delta(|\mathbb{F}_5^n|)$ elements $x \in S$.

Proof. Consider the graph of ϕ , $\Gamma = \{(h, \phi(h)) : h \in S\} \subseteq \mathbb{F}_5^n \times \widehat{\mathbb{F}_5^n}$. By [Proposition 4.15,](#page-38-0) Γ has $\Omega_{\delta}(|\mathbb{F}_{5}^{n}|^{3})$ additive quadruples.

By [Balog–Szemeredi–Gowers, Schoen,](#page-7-0) there exists $\Gamma' \subseteq \Gamma$ with $|\Gamma'| = \Omega_{\delta}(|\Gamma|) = \Omega_{\delta}(|\mathbb{F}_{5}^{n}|)$ and $|\Gamma' + \Gamma'| =$ $O_{\delta}(|\Gamma'|)$. udefine $S' \subseteq S$ by $\Gamma' = \{(h, \phi(h)) : h \in S'\}$ and note $|S'| = \Omega_{\delta}(|\mathbb{F}_{5}^{n}|)$.

By [Freiman-Ruzsa](#page-4-0) applied to $\Gamma' \subseteq \mathbb{F}_5^n \times \widehat{\mathbb{F}_5^n}$, there exists a subspa[c](#page-12-1)e $H \leq \mathbb{F}_5^n \times \widehat{\mathbb{F}_5^n}$ with $|H| = O_\delta(|\Gamma'|) = O_\delta(|\Gamma'|)$ $O_{\delta}(|\mathbb{F}_5^n|)$ such that $\Gamma' \subseteq H$.

Denote by $\pi: \mathbb{F}_5^n \to \mathbb{F}_5^n$ the proje[c](#page-12-1)tion onto the first n coordinates. By construction, $\pi(H) \supseteq S'$. Moreover, since $|S'| = \Omega_{\delta}(|\mathbb{F}_{5}^{n}|),$

$$
|\ker(\pi|_H)| = \frac{|H|}{|\operatorname{Im}(\pi|_H)|} = \frac{O_\delta(|\mathbb{F}_5^n|)}{|S'|} = O_\delta(1).
$$

We may thus partition H into $O_{\delta}(1)$ cosets of some subspace H^* such that $\pi|_H$ is injective on each coset. By averaging, there exists a coset $x + H^*$ such that

$$
|\Gamma' \cap (x + H^*)| = \Omega_{\delta}(|\Gamma'|) = \Omega_{\delta}(|\mathbb{F}_5^n|).
$$

Set $\Gamma'' = \Gamma' \cap (x + H^*)$, and define S'' accordingly.

Now $\pi|_{x+*}$ is injective and surjective onto $V := \text{Im}(\pi|_{x+H^*})$. This means there is an affine linear map $\psi: V \to \widehat{\mathbb{F}_5^n}$ su[c](#page-12-1)h that $(h, \psi(h)) \in \Gamma''$ for all $h \in S''$. \Box Then do steps 3 and 4.

 \Box

Index

[EG](#page-12-2) [13,](#page-12-5) [14,](#page-13-4) [15,](#page-14-4) [16,](#page-15-3) [17,](#page-16-1) [19,](#page-18-3) [30,](#page-29-0) [31,](#page-30-0) [34,](#page-33-0) [36,](#page-35-0) [37](#page-36-2) [M](#page-32-1) [33,](#page-32-4) [34](#page-33-0) [Pg](#page-8-0) [9,](#page-8-2) [10,](#page-9-1) [11,](#page-10-0) [12](#page-11-0) [T](#page-18-0) [19,](#page-18-3) [20,](#page-19-1) [22,](#page-21-0) [34,](#page-33-0) [35,](#page-34-1) [36,](#page-35-0) [37,](#page-36-2) [38,](#page-37-1) [39](#page-38-1) [additive energy](#page-6-0) [7](#page-6-2) [additive quadruple](#page-6-0) [7](#page-6-2) [bf](#page-13-3) [19,](#page-18-3) [36,](#page-35-0) [38,](#page-37-1) [39](#page-38-1) [bohr](#page-23-0) [24,](#page-23-1) [25](#page-24-0) [Bohr set](#page-23-0) [24](#page-23-1) [charG](#page-12-1) [13,](#page-12-5) [14,](#page-13-4) [15,](#page-14-4) [16,](#page-15-3) [17,](#page-16-1) [24,](#page-23-1) [25,](#page-24-0) [27,](#page-26-1) [35,](#page-34-1) [36,](#page-35-0) [39,](#page-38-1) [40](#page-39-0) [characteristic measure](#page-13-1) [14,](#page-13-4) [29](#page-28-0) [Chernoff's inequality](#page-14-2) [14,](#page-13-4) [26](#page-25-2) [cmu](#page-13-1) [14,](#page-13-4) [29,](#page-28-0) [30,](#page-29-0) [31](#page-30-0) [conv](#page-15-1) [16,](#page-15-3) [17,](#page-16-1) [19,](#page-18-3) [25,](#page-24-0) [29,](#page-28-0) [30,](#page-29-0) [31](#page-30-0) [difference constant](#page-3-0) [4](#page-3-3) [diffset](#page-1-1) [2,](#page-1-2) [3,](#page-2-3) [4,](#page-3-3) [6,](#page-5-2) [7,](#page-6-2) [8,](#page-7-2) [10,](#page-9-1) [12,](#page-11-0) [17,](#page-16-1) [18,](#page-17-1) [21,](#page-20-0) [31,](#page-30-0) [32](#page-31-0) [dissociated](#page-27-0) [28](#page-27-2) [doubling constant](#page-3-0) [4](#page-3-3) [doubc](#page-3-0) [4,](#page-3-3) [5](#page-4-1) [e](#page-12-4) [17,](#page-16-1) [19](#page-18-3) [energy](#page-6-0) [7,](#page-6-2) [8,](#page-7-2) [9,](#page-8-2) [11,](#page-10-0) [17,](#page-16-1) [31](#page-30-0) [ft](#page-13-0) [14,](#page-13-4) [15,](#page-14-4) [16,](#page-15-3) [17,](#page-16-1) [18,](#page-17-1) [19,](#page-18-3) [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-0) [23,](#page-22-1) [25,](#page-24-0) [27,](#page-26-1) [28,](#page-27-2) [34,](#page-33-0) [35,](#page-34-1) [36,](#page-35-0) [39](#page-38-1) [ip](#page-36-0) [37](#page-36-2) [mdiff](#page-3-1) [4,](#page-3-3) [5,](#page-4-1) [6,](#page-5-2) [17](#page-16-1) [Parseval's identity](#page-14-0) [15,](#page-14-4) [16,](#page-15-3) [18,](#page-17-1) [20,](#page-19-1) [36](#page-35-0) [Plancherel's identity](#page-14-1) [15,](#page-14-4) [20,](#page-19-1) [27](#page-26-1) [r](#page-7-1) [16,](#page-15-3) [31](#page-30-0) [Rusza distance](#page-2-0) [3](#page-2-3) [rd](#page-2-0) [3,](#page-2-3) [4](#page-3-3) $\rho\textrm{-large spectrum of }f$ $\rho\textrm{-large spectrum of }f$ $\rho\textrm{-large spectrum of }f$ [15](#page-14-4) [spec](#page-15-0) [16,](#page-15-3) [17,](#page-16-1) [25,](#page-24-0) [27,](#page-26-1) [28](#page-27-2) [stimes](#page-18-1) [19,](#page-18-3) [20,](#page-19-1) [22,](#page-21-0) [34](#page-33-0) [sumset](#page-1-1) [2](#page-1-2) [sumset](#page-1-1) [2,](#page-1-2) [3,](#page-2-3) [4,](#page-3-3) [5,](#page-4-1) [6,](#page-5-2) [8,](#page-7-2) [9,](#page-8-2) [10,](#page-9-1) [16,](#page-15-3) [17,](#page-16-1) [18,](#page-17-1) [19,](#page-18-3) [31,](#page-30-0) [32](#page-31-0) [unorm](#page-36-1) [37,](#page-36-2) [38,](#page-37-1) [39](#page-38-1)