%! TEX root = MT.tex % vim: tw=50 % 18/02/2025 11AM \begin{fcdefn}[Diagram] \label{defn:10.2} \glsnoundefn{diag}{diagram}{diagrams}% \glsnoundefn{ediag}{elementary diagram}{elementary diagrams}% \glssymboldefn{diag}% The \emph{diagram} of $\mathcal{M}$ (respectively \emph{elementary diagram}), $\mathcal{D}(\mathcal{M})$, is the set of quantifier-free $\mathcal{L}_M$-sentences (respectively all $\mathcal{L}_M$-sentences) true in $\mathcal{M}$. \end{fcdefn} \begin{fcprop}[] \label{prop:10.3} Assuming: - $\mathcal{M}$ is an $\mathcal{L}$-structure - $N^*$ an $\mathcal{L}_M$-structure such that $N^* \models \mathcal{D}(\mathcal{M})$ - let $N$ be the $\mathcal{L}$-reduct of $N^*$ to $\mathcal{L}$ (means throw away $\mathcal{L}_M \setminus \mathcal{L}$ sentences) - define $h : \mathcal{M} \to \mathcal{N}$ such that $h(a) = \ul{a} = a^N$. Then: $h$ is an $\mathcal{L}$-\gls{em}. Moreover, if $N^* \models \Th_{M}(\mathcal{M})$ then $h$ is an \glsref[eemb]{elementary $\mathcal{L}$-embedding}. \end{fcprop} \begin{proof} We use \cref{coro:2.4}. Let $\varphi(x_1, \ldots, x_n)$ be a quantifier-free $\mathcal{L}$-formula, and fix $a_1, \ldots, a_n \in M$. Then \begin{align*} M \models \varphi(a_1, \ldots, a_n) &\iff \varphi(\ul{a_1}, \ldots, \ul{a_n}) \in \Diag(\mathcal{M}) \\ &\iff N^* \models \varphi(\ul{a_1}, \ldots, \ul{a_n}) \\ &\iff N \models \varphi(h(a_1), \ldots, h(a_n)) \end{align*} Therefore $h$ is an $\mathcal{L}$-\gls{em}. ``Moreover'' is similar. \end{proof} \begin{remark*} You can use this to show that any torsion free abelian group is orderable (\es{2}). \end{remark*} \newpage \section{Introduction to Quantifier Elimination} \begin{fcdefnstar}[Definable set] \glsadjdefn{defable}{definable}{set}% Let $T$ be an $\mathcal{L}$-theory and $M \models T$. Then $X \subseteq M^n$ is \emph{definable} is there is some $\mathcal{L}$-formula $\varphi(x_1, \ldots, x_n)$ such that \[ X = \{\ol{a} \in M^n : M \models \varphi(\ol{a})\} .\] \end{fcdefnstar} \begin{fcdefn}[Theory has quantifier elimination] \glsadjdefn{qe}{quantifier elimination}{theory}% \label{defn:11.1} An $\mathcal{L}$-theory $T$ has \emph{quantifier elimination (QE)} if for any $\mathcal{L}$-formula $\varphi(x_1, \ldots, x_n)$ ther eis a quantifier free formula $\psi(x_1, \ldots, x_n)$ such that \[ T \models \forall \ol{x}(\varphi(\ol{x}) \leftrightarrow \psi(\ol{x})) .\] (i.e. they define the same set in all models). \end{fcdefn} \begin{example} \label{eg:11.2} \phantom{} \begin{enumerate}[(1)] \item Let $T = \Th(F)$, $F$ a field in $\mathcal{L}_{\text{rings}}$. Let $\varphi(w, x, y, z)$ be the formula saying \[ \text{``} \begin{pmatrix} w & x \\ y & z \end{pmatrix} \text{ has an inverse''} ,\] i.e. \[ \exists s, t, u, v \left[ \begin{pmatrix} s & t \\ u & v \end{pmatrix} \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right] .\] Then \[ T \models \forall x, w, y, z (\varphi(w, x, y, z) \iff wz - xy \neq 0) .\] \item Let $T = \Th(\Rbb, \cdot, +, 0, 1)$. Consider $\varphi(x) = \exists y(y^2 = x)$ (this defines $\Rbb_{\ge 0}$). Quantifier free formulas in one variable are boolean combinations of polynomial equations, i.e. define sets of size finite or cofinite. But $\Rbb^{\ge 0}$ is infinite-co-infinite, so cannot be defined by a quantifier free formula. Remark: $\Th(\Rbb, \cdot, +, 0, 1)$ does have \gls{qe}. We can show $\Th(\Rbb, \cdot, +, 0, 1)$ and $\Th(\Rbb, \cdot, +, 0, 1, <)$ have the same \gls{defable} sets. This is because we can define $<$ in $\mathcal{L}_{\text{rings}}$ in $T$ by noting $x < y$ if and only if \[ \exists z (z \neq 0 \wedge y - z^2 = x) .\] Note: you can always find a language in which the theory of a structure has \gls{qe}: just add a relation symbol for each non quantifier-free formula. This is called the ``Morleyisation'' of a structure, but isn't particularly informative. \end{enumerate} \end{example} \begin{fclemma}[] \label{lemma:11.3} Assuming: - $T$ is an $\mathcal{L}$-theory - for any quantifier-free formula $\varphi(x_1, \ldots, x_n, y)$ there is a quantifier-free formula $\psi(x_1, \ldots, x_n)$ such that \[ T \models \forall \ol{x} (\exists y \varphi(\ol{x}, y) \leftrightarrow \psi(\ol{x})) .\] Then: $T$ has \gls{qe}. \end{fclemma} \begin{proof} Exercise: induction on the complexity of formulas. \end{proof} \begin{fcthm}[] \label{thm:11.4} Assuming: - $T$ an $\mathcal{L}$-theory Thens:[(i)]tfae - $T$ has \gls{qe} - Let $M, N \models T$, $A \subseteq \mathcal{M}$, $A \subseteq \mathcal{N}$ (\glspl{substruc}). For any quantifier-free formula $\varphi(x_1, \ldots, x_n, y)$ and tuple $\ol{a} \in A$, if $\mathcal{M} \models \exists y, \varphi(\ol{a}, y)$ then $\mathcal{N} \models \exists y, \varphi(\ol{a}, y)$. - For any $\mathcal{L}$-structure $\mathcal{A}$, $T \cup \Diag(\mathcal{A})$ is a \gls{compt} $\mathcal{L}_A$-theory. \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[{(i) $\implies$ (i)}] \item[(i) $\implies$ (iii)] Assume $T$ has \gls{qe}, and let $\mathcal{A}$ be an $\mathcal{L}$-structure. Suppose $\mathcal{M}, \mathcal{N} \models T \cup \Diag(\mathcal{A})$. We want to show $M \ee_{\mathcal{L}_{\mathcal{A}}} \mathcal{N}$. Let $\sigma$ be an $\mathcal{L}_A$-sentence, and suppose that $M \models \sigma$. Then $\sigma$ can be written as $\varphi(\ol{a})$ where $\varphi(\ol{x})$ is an $\mathcal{L}$-formula and $\ol{a} \in A$. By \gls{qe}, we have $\psi(\ol{x})$ such that \[ T \models \forall \ol{x} (\varphi(\ol{x}) \leftrightarrow \psi(\ol{x})) .\] Now $\mathcal{M} \models T$, so $\mathcal{M} \models \forall \ol{x}(\varphi(\ol{x}) \leftrightarrow \psi(\ol{x}))$, and $\mathcal{M} \models \varphi(\ol{a})$. So $\mathcal{M} \models \psi(\ol{a})$. Now $\psi(\ol{a}) \in \Diag(\mathcal{A})$ as $\mathcal{M} \models \Diag(\mathcal{A})$. So $N \models \psi(\ol{a})$, as $\mathcal{N} \models \Diag(\mathcal{A})$. Hence $\mathcal{N} \models \varphi(\ol{a})$ as $\mathcal{N} \models T$ (i.e. $\mathcal{N} \models \forall \ol{x} (\varphi(\ol{x}) \leftrightarrow \psi(\ol{x}))$). So $N \models \sigma$.