%! TEX root = MT.tex % vim: tw=50 % 15/02/2025 11AM \newpage \section{Algebraically closed fields} \begin{fcdefnstar}[Algebraically closed] Suppose $(K, +, \cdot)$ is a field (in $\mathcal{L}_{\text{rings}}$). It is \emph{algebraically closed} if every non-constant polynomial over $K$ has a root in $K$. \end{fcdefnstar} \begin{fcdefn}[ACF] \glssymboldefn{acf}% \label{defn:9.1} $\ACF$ is the $\mathcal{L}_{\text{rings}}$ theory axiomatising algebraically closed fields. It consists of: \begin{itemize} \item field axioms \item for every $d \ge 1$, we add an axiom: \[ \forall v_0, \ldots, v_d, \exists x (v_d \neq 0 \implies v_0 + v_1 x + \cdots + v_d x^d = 0) .\] \end{itemize} \end{fcdefn} \begin{note*} This is an infinite axiomatisation. \end{note*} \begin{fcdefn}[ACF with characteristic] \label{defn:9.2} For $n \ge 1$, let $\chi_n$ be the sentence \[ \ub{1 + \cdots + 1}_{\text{$n$ times}} = 0 .\] Set \begin{align*} \ACF_0 &= \ACF \cup \{\neg \chi_n : n \in \Nbb\} \\ \ACF_p &= \ACF \cup \{\chi_p\} &&\text{(for $p$ a prime)} \end{align*} \end{fcdefn} \begin{fcthm}[] \label{thm:9.3} $\ACF_0$ and $\ACF_p$ are \cloze{$\kappa$-\gls{kcat} for $\kappa > \aleph_0$.} \end{fcthm} \begin{proof} The Transcendence degree of $k \models \acf$ (and algebraically closed field) is the cardinality of the largest algebraically independent subset of $k$. For example, \begin{align*} \trdeg_{\Qbb}(\ol{\Qbb}) &= 0 \\ \trdeg_{\Qbb}(\ol{\Qbb(\pi)}) &= 1 \\ \trdeg_{\Qbb}(\Cbb) &= 2^{\aleph_0} \\ \trdeg_{\Qbb}(\ol{\Qbb(x_i)_{i < \kappa}}) &= \kappa \end{align*} From algebra we know: \begin{enumerate}[(1)] \item If $k, k' \models \acf$ then $k \cong k'$ if and only if \begin{itemize} \item $\trdeg(k) = \trdeg(k')$ \item $\charr(k) = \charr(k')$ \item $|k| = |k'|$ \end{itemize} \item If $k \models \acf$, $\lambda = \trdeg_{\Qbb}(k)$, then $|\kappa| = \aleph_0 + \lambda$. Thus if $k, k' \models \acf_0$ or $\acf_p$ are uncountable and $|k| = |k'|$ then $\trdeg_{\Qbb}(k) = \trdeg_{\Qbb}(k')$ so $k \cong k'$. \qedhere \end{enumerate} \end{proof} \begin{corollary}[] \label{coor:9.4} $\acf_0$ and $\acf_p$ are complete. \end{corollary} \begin{proof} \nameref{thm:1.8}. \end{proof} \begin{remark*} $\acf_0$ and $\acf_p$ are not $\aleph_0$-\gls{kcat}. (Consider fields with different finite transcendence degrees). \end{remark*} \begin{fcdefn}[Polynomial map] \glsnoundefn{polymap}{polynomial map}{polynomial maps}% \label{defn:9.5} Let $k$ be a field. We say a function $\phi : K^m \to K^m$ is a \emph{polynomial map} if \[ \Phi(\ol{x}) = (p_1(x_1, \ldots, x_m), \ldots, p_n(x_1, \ldots, x_m)) \] where each $p_1, \ldots, p_n$ is a polynomial. \end{fcdefn} \begin{fcthm}[Ax-Grothendieck] \label{thm:9.6} Assuming: - $k$ an algebraically closed field - $\Phi : K^n \to K^n$ an injective \gls{polymap} Then: $\Phi$ is surjective. \end{fcthm} \begin{proof} First suppose $K = \ol{\Fbb_p}$ for some prime $p$. $\ol{\Fbb_p} = \bigcup_k \Fbb_{p^k}$. Fix an $m$ such that the coefficients of $\Phi$ all lie in $\Fbb_{p^m}$. Note: $\ol{\Fbb_p} = \bigcup_k \Fbb_{p^{mk}}$. For any $k \ge 1$, $\Phi$ induces an injective \gls{polymap} $\Fbb_{p^{km}} \to \Fbb_{p^{km}}$ which has to be surjective (as finite field). Hence \begin{align*} \Phi(\ol{\Fbb_p}^n) &= \Phi\left(\bigcup_k \Fbb_{p^{mk}}^n\right) \\ &= \bigcup_k \Phi(\Fbb_{p^{mk}}^n) \\ &= \bigcup_k \Fbb_{p^{mk}}^n \\ &= \ol{\Fbb_p}^n \end{align*} So $\Phi$ is surjective. Given $n, d \ge 1$, let $\psi_{n, d}$ be the $\mathcal{L}$-sentence expressing ``every injective \gls{polymap} with $n$-coordinates, each of which is a polynomial in $n$ variables with degree at most $d$, is surjective''. Exercise: Show that this is a first order $\mathcal{L}_{\text{rings}}$ sentence. Now $\ol{\Fbb_p} \models \psi_{n, d}$ for all $n, d \ge 1$ and $p$ prime. $\acf_p$ is \gls{compt}, so $\acf_p \models \psi_{n, d}$. Now consider $\acf_0$. Suppose for contradiction that $\acf_0 \not\models \psi_{n, d}$ for some $n, d$, so $\acf_0 \models \neg\psi_{n, d}$. By compactness, there exists $\Sigma \subseteq \acf_0$ finite such that $\Sigma \models \neg \psi_{n, d}$. In particular, $\Sigma \subseteq \acf \cup \{\neg \chi_0, \ldots, \neg \chi_m\}$ for some $m$. Choose a prime $p$ such that $p > m$ and $\acf_p \vdash \Sigma$. So must have $\acf_p \models \neg \psi_{n, d}$, contradiction. \end{proof} \begin{fcthm}[Lipschiptz principal] \label{thm:9.7} Assuming: - $\phi$ an $\mathcal{L}_{\text{rings}}$ sentence Thens:[(1)]tfae - $\acf_0 \models \phi$, i.e. $\phi$ in every $k \models \acf_0$ - $\acf_0 \cup \{\phi\}$ is consistent - there exists some $n > 0$ such that $\acf_p \models \phi$ for any $p > n$ - for all $n > 0$, there exists some $p > n$ such that $\acf_p \cup \{\phi\}$ is consistent \end{fcthm} \newpage \section{Diagrams} Let $\mathcal{N}, \mathcal{M}$ be $\mathcal{L}$-structures. \begin{remark} \label{remark:10.1} If $h : \mathcal{M} \to \mathcal{N}$ is an (elementary) $\mathcal{L}$-embedding then after identifying $a \in M$ with $h(a) \in N$ we can view $M$ as an (elementary) \gls{substruc} of $N$. \begin{center} \includegraphics[width=0.4\linewidth]{images/f32ef80cefb14b88.png} \end{center} Given $A \subseteq M$, let $\mathcal{L}_A = \mathcal{L} \cup \{\ul{a} : a \in A\}$ where $\ul{a}$ is a new constant symbol. Then $M$ is an $\mathcal{L}_A$-structure. Interpret $\ul{a}$ as $a$. \end{remark}