%! TEX root = MT.tex % vim: tw=50 % 11/02/2025 11AM Options to think about: \begin{enumerate}[(a)] \item Every $U \in \mathcal{U}$ contains an even number. \item Every $U \in \mathcal{U}$ contains an odd number. \item There is a $U \in \mathcal{U}$ all even. \item There is a $U \in \mathcal{U}$ all odd. \end{enumerate} Consider $b = (1, 1, 1, \ldots) \in \prod_{n \in \Nbb} C_n$. Suppose (a), so for every $K \in \mathcal{U}$ we have $i \in K$ even, i.e. $b_i \notin I_R(C_1)$, so $I_R(\mathcal{C}) \neq \mathcal{C}$. Note (a) is equivalent to (c). By similar reasoning, (b) implies $I_R(\mathcal{C}) = \mathcal{C}$ (and also (b) is equivalent to (c)). \end{example} \newpage \section{\L o\'s's Theorem and Consequences} Question, how does $\varphi \left( \prod_{j \in J} \mathcal{M}_j / \mathcal{U}\right)$ relate to $[\varphi(\mathcal{M}_j)_{j \in J}]$? \begin{fcthm}[Los Lemma] \label{thm:7.1} Assuming: - $\mathcal{L}$ a language - $\varphi$ an $\mathcal{L}$-formula - $(\mathcal{M}_j)_{j \in J} = (M_j, I_j)_{j \in J}$ a non-empty family of $\mathcal{L}$-structures - $\mathcal{U}$ an \gls{ultra} on $J$ - $\mathcal{M} = \left( \prod_{j \in J} M_j / \mathcal{U}, I_{\mathcal{U}} \right)$ Then: \[ \varphi(\mathcal{M}) = [\varphi(\mathcal{M}_j)_{j \in J}] .\] \end{fcthm} \begin{proof}[Proof (sketch)] Induction on \begin{itemize} \item Complexity of terms \item Formulas \end{itemize} (essentially \cref{prop:5.8}). \end{proof} \begin{fccoro}[] \label{coro:7.2} Assuming: - $\sigma$ an $\mathcal{L}$-sentence - $(\mathcal{M}_j)_{j \in J}$ a family of non-empty $\mathcal{L}$-structures - $\mathcal{U}$ an \gls{ultra} on $J$ - $\mathcal{M} = \prod_{j \in J} \mathcal{M}_j / \mathcal{U}$ Then: \begin{iffc} \lhs $\mathcal{M} \models \sigma$ \rhs $\{j \in J : \mathcal{M}_j \models \sigma\} \in \mathcal{U}$. \end{iffc} \end{fccoro} \begin{iffproof} \rightimpl Suppose $\mathcal{M} \models \sigma$. Then $\sigma(\mathcal{M})$ is a non-empty subset of $\mathcal{M}^0$, i.e. its the empty tuple (). So $\{[(\sigma(\mathcal{M}_j))_{j \in J}]\} = \{()\}$. So \[ \{j \in J : () \in \sigma(\mathcal{M}_j)\} = \{j \in J : \mathcal{M}_j \models \sigma\} .\] Since the LHS is in $\mathcal{U}$, we get that the RHS is too. \leftimpl Similar \end{iffproof} \begin{fcthm}[Compactness -- ultraproduct proof] Assuming: - $\mathcal{L}$ a language - $\Sigma$ a set of $\mathcal{L}$-sentences Then: \begin{iffc} \lhs $\Sigma$ is consistent \rhs every finite subset of $\Sigma$ is consistent. \end{iffc} \end{fcthm} \begin{iffproof} \rightimpl Clear. \leftimpl Assume every finite subset of $\Sigma$ is consistent. Let $J$ be the set of all finite subsets of $\Sigma$. For each $j \in J$, let \[ \hat{j} = \{k \in J : j \subseteq k\} .\] Let $\mathcal{B} = \{\hat{j} : j \in J\}$ and let \[ \mathcal{F} = \{A \subseteq J : \exists B \in \mathcal{B}, B \subseteq A\} .\] Exercise: $\mathcal{F}$ is a \gls{filt}. Let $\mathcal{U}$ be an \gls{ultra} extending $\mathcal{F}$. For each $j \in J$, let $\mathcal{M}_j \models j$. Let $\mathcal{M} = \left( \prod_{j \in J} \mathcal{M}_j / \mathcal{U} \right)$. Claim: $\mathcal{M} \models \Sigma$. Let $\sigma \in \Sigma$. Then $\{\sigma\} \in J$ and $\widehat{\{\sigma\}} \subseteq \{j \in J : \mathcal{M}_j \models \sigma\}$. So $\{j \in J : \mathcal{M}_j \models \sigma\} \in \mathcal{U}$, so $\mathcal{M} \models \sigma$. So: $\forall \sigma \in \Sigma, \mathcal{M} \models \sigma$. \end{iffproof} \newpage \section{More Constructions} Let $\mathcal{L}$ be a language, $\mathcal{M}$ an $\mathcal{L}$-structure. Fix a collection $(\mathcal{M}_i)_{i \in I}$ of \glspl{substruc} of $\mathcal{M}$. Let $N = \bigcap_{i \in I} M_i$, and assume $N$ is non-empty. Then we have a canonical $\mathcal{L}$-structure, with universe $N$ and interpretiation: \begin{itemize} \item For $f$ a function, $f^N = f^{\mu} |_N$ (which equals $f^{\mathcal{M}_i}|_N$ for each $i \in I$) \item For $R$ an $n$-ary relation, $R^N = R^{\mathcal{M}} \cap N^n$ (which equals $R^{\mathcal{M}_i}$ for each $i \in I$) \item For $c$ a constant, $c^N = c^{\mathcal{M}}$ (which equals $c^{\mathcal{M}_i}$ for each $i \in I$) \end{itemize} Note $N$ is also a \gls{substruc}. \begin{fcdefn}[Generated by] \label{defn:8.1} Given an $\mathcal{L}$-structure $\mathcal{M}$, a non-empty $A \subseteq M$, the \emph{\gls{substruc} generated by $A$} is the intersection of all \glspl{substruc} containing $A$. \end{fcdefn} \begin{fcdefn}[Chain, Elementary chain] \label{defn:8.2} Let $\alpha$ be a limit ordinal. A collection $(\mathcal{M}_i)_{i < \alpha}$ of $\mathcal{L}$-structures is a \emph{chain} if $\mathcal{M}_i \subseteq \mathcal{M}_j$ (\gls{substruc}) for all $i < j$, and is an \emph{elementary chain} if $\mathcal{M}_i \esub \mathcal{M}_j$ for all $i < j$. If $(\mathcal{M}_i)_{i < \alpha}$ is a chain then $\bigcup_{i < \alpha} \mathcal{M}_j$ is a well-defined $\mathcal{L}$-structure. \end{fcdefn} % Hand in: 2, 8, any time on Thursday.