%! TEX root = MT.tex % vim: tw=50 % 08/02/2025 11AM \begin{fcdefn}[] \label{defn:5.6} Let $(A_j)_{j \in J}$, $\mathcal{U}$ (\gls{ultra} on $J$), $\sim$ as before, and let $n \in \Nbb$. For each $j \in J$, suppose $B_j \subseteq A_j^n$. Define \begin{align*} [(B_j)_{j \in J}] &= \left\{ ([(a_j^1)_{j \in J}], \ldots, [(a_j^n)_{j \in J}]) \in \left( \prod_{j \in J} A_j / \mathcal{U} \right)^n : \{j \in J : (a_j^1, \ldots, a_j^n) \in B_j\} \in \mathcal{U} \right\} \\ &\subseteq \left( \prod_{j \in J} A_j / \mathcal{U} \right)^n \end{align*} \end{fcdefn} \begin{note*} If $n = 0$, then we get that \begin{align*} B_j &= \{()\} \\ [(B_j)_{j \in J}] &= \{()\} \end{align*} \end{note*} \begin{fcdefn}[] \label{defn:5.7} Let $n > 0$, $k \in \{1, \ldots, n\}$. Define: \begin{itemize} \item $\pi_k(x_1, \ldots, x_n) = (x_1, \ldots, x_{k - 1}, x_{k + 1}, \ldots, x_n)$. \item For $X$ a set of $n$-tuples, \[ \pi_k(X) = \{(x_1, \ldots, x_{k - 1}, x_{k + 1}, \ldots, x_n) : (x_1, \ldots, x_n) \in X\} .\] \end{itemize} \end{fcdefn} \begin{fcprop}[] \label{prop:5.8} Assuming: - $(A_j)_{j \in J}$, $\mathcal{U}$, $\sim$ as usual - $n \in \Nbb$ - for each $j$ we have $B_j, C_j \subseteq A_j^n$ Thens:[(1)] - $[(B_j)_{j \in J}] \cap [(C_j)_{j \in J}] = [(B_j \cap C_j)_{j \in J}]$ - $[(B_j)_{j \in J}] \cup [(C_j)_{j \in J}] = [(B_j \cup C_j)_{j \in J}]$ - $[(B_j)_{j \in J}] \setminus [(C_j)_{j \in J}] = [(B_j \setminus C_j)_{j \in J}]$ - If $n > 0$, $k \in \{1, \ldots, n\}$ then \[ \pi_k([(B_j)_{j \in J}]) = [(\pi_k(B_j))_{j \in J}] .\] \end{fcprop} \begin{proof} (1) - (3): Straightforward. See \es{}. (4): Let $n > 0$, $k \in \{1, \ldots, n\}$. Let \[ \alpha = ([(a_j^1)_{j \in J}], \ldots, [(a_j^{k - 1})_{j \in J}], [(j_j^{k + 1})_{j \in J}], \ldots, [(a_j^n)_{j \in J}]) \in \pi_k([(B_j)_{j \in J}]) .\] So we have some $[(a_j^k)_{j \in J}]$ such that \[ ([(a_j^1)_{j \in J}], \ldots, [(a_j^n)_{j \in J}]) \in [(B_j)_{j \in J}] .\] So $U = \{j \in J : (a_j^1, \ldots, a_j^n) \in B_j\} \in \mathcal{U}$. Consider \[ V = \{j \in J : (a_j^1, \ldots, a_j^{k - 1}, a_j^{k + 1}, \ldots, a_n) \in \pi(B_j)\} \supseteq \mathcal{U} .\] So $\alpha \in [(\pi_k(B_j))_{j \in J}]$, i.e. $\pi_k[(B_j)_{j \in J}] \subseteq [(\pi_k(B_j))_{j \in J}]$. Showing $[(\pi_k(B_j))_{j \in J}] \subseteq \pi([(B_j)_{j \in J}])$ is similar (do it as an exercise). \end{proof} \begin{fcdefn}[] \label{defn:5.9} Suppose $A_j = A$ for each $j \in J$. Then we call $\prod_{j \in J} A_j / \mathcal{U}$ an \emph{ultrapower} of $A$, and write $A^{\mathcal{U}}$. If $B \subseteq A$, we write $[B]$ for $[(B)_{j \in J}]$. \end{fcdefn} \begin{fcthm}[] \label{thm:5.10} Assuming: - $A^{\mathcal{U}}$ be as above - $J = \Nbb$ - $\{C \subseteq \Nbb : \Nbb \setminus C \text{ is finite}\} \subseteq \mathcal{U}$ - $n \in \Nbb$ - for each $m \in \Nbb$, let $B_m \subseteq A^n$ satisfying: \begin{enumerate}[(1)] \item $[B_m] \neq \emptyset ~\forall m \in \Nbb$ \item $[B_k] \subseteq [B_m]$ for all $m, k \in \Nbb$ with $m \le k$ \end{enumerate} Then: $\bigcap_{m \in \Nbb} [B_m] \neq \emptyset$. \end{fcthm} \noproof \begin{proof} Omitted. For $n = 1$, this is a potential presentation topic. \end{proof} \newpage \section{Ultraproduct Structures} \begin{fcdefn}[] \label{defn:6.1} Let $\mathcal{M}_j = (M_j, I_j)$ be $\mathcal{L}$-structures for each $j \in J$. Let $\mathcal{U}$ be an ultraproduct on $J$. Define an interpretation $I_{\mathcal{U}}$ of $\mathcal{L}$ on $\prod_{j \in J} M_j / \mathcal{U}$. Let $S \in \mathcal{L}$. \begin{citems} \item If $S$ is an $n$-ary relation: \[ I_{\mathcal{U}}(S) = [(I_j(S))_{j \in J}] \subseteq \left( \prod_{j \in J} M_j / \mathcal{U} \right)^n .\] \item If $S$ is a constant: \[ I_{\mathcal{U}}(S) = [(I_j(S))_{j \in J}] \in \prod_{j \in J} M / \mathcal{U} .\] \item Functions are a bit less clear. However, we can always turn a function into a relation by looking at its graph (i.e. $f : M^n \to M$ has graph $R_f = \{(\ol{x}, y) \in M^{n + 1} : f(\ol{x}) = y\}$). So if $S$ is a function: for each $j \in J$, define the graph of $I_j(S)$ as \[ G_j(S) = \{(a_1, \ldots, a_n, b) \in M_j^{n + 1} : I_j(S)(a_1, \ldots, a_n) = b\} .\] Then $[(G_j(S))_{j \in J}]$ is the graph of a function \[ \left( \prod_{j \in J} M_j / \mathcal{U} \right)^n \to \prod_{j \in J} M_j / \mathcal{U} .\] (Checking this is left as an exercise). Now define $I_{\mathcal{U}}(S)$ to be the function corresponding to $[(G_j(S))_{j \in J}]$. \end{citems} \end{fcdefn} \begin{example} \label{eg:6.2} $\mathcal{L} = \{+, R\}$ (where $+$ is a function and $R$ is a unary relation). Let $\mathcal{C}_n = (C_n, I_n)$ with $C_n = \Zbb / n\Zbb$, with addition modulo $n$, and let $I_n(R) = \{x \in C_n : \exists y \in C_n, 2y = x\}$. Consider $\mathcal{C} = \left( \prod_{n \in \Nbb_{>0}} C_n / \mathcal{U}, I_{\mathcal{U}} \right)$. What does the set $I_{\mathcal{U}}(R)$ look like? If $\gcd(n, 2) = 1$, then $I_n(R) = C_n$. If $\gcd(n, 2) = 2$, then $I_n(R) \neq C_n$ (for example, $1 \notin I_n(R)$). \begin{itemize} \item If $\mathcal{U} = \{A \subseteq \Nbb : 3 \in A\}$, then $\mathcal{C} \cong \mathcal{C}_3$, so $I_{\mathcal{U}}(R) = \mathcal{C}$. \item Homework: Can you think of two non-principal \glspl{ultra}, with one of them having $I_{\mathcal{U}}(R) = \mathcal{C}$, and the other having $I_{\mathcal{U}}(R) \neq \mathcal{C}$. \end{itemize}