%! TEX root = MT.tex % vim: tw=50 % 04/02/2025 11AM % Part 2: Ultraproducts \newpage \section{Filters} \begin{fcdefn}[Filter] \label{defn:4.1} \glsnoundefn{filt}{filter}{filters}% Let $J$ be a set. A \emph{filter} $\mathcal{F}$ on $J$ is a non-empty subset of $\mathcal{P}(J)$ such that: \begin{itemize} \item $\emptyset \notin \mathcal{F}$. \item $\forall A, B \in \mathcal{F}, A \cap \in \mathcal{F}$ (``closed under finite intersections''). \item $\forall A \in \mathcal{F}$, if $A \subseteq B \subseteq B \subseteq J$, then $B \in \mathcal{F}$ (``closed under super set''). \end{itemize} \end{fcdefn} \begin{example} \label{eg:4.2} \phantom{} \begin{itemize} \item For $J$ infinite, \[ \mathcal{F} \defeq \{A \subseteq J : J \setminus A \text{ is finite}\} \] is a \gls{filt}. \item For $J$ non-empty, and any $i \in J$, \[ \mathcal{F} = \{A \subseteq J : i \in J\} \] is a \gls{filt}. \end{itemize} \end{example} \begin{fcdefn}[Ultrafilter] \label{defn:4.3} \glsnoundefn{ultra}{ultrafilter}{ultrafilters}% Let $J$ be an infinite set and $\mathcal{F}$ a \gls{filt} on $J$. We say $\mathcal{F}$ is an \emph{ultrafilter} if every \gls{filt} $\mathcal{G}$ on $J$ satisfying $\mathcal{F} \subseteq \mathcal{G}$ also satisfies $\mathcal{G} = \mathcal{F}$. \end{fcdefn} \begin{fcprop}[] \label{prop:4.4} Assuming: - $J$ a set - $\mathcal{F}$ a \gls{filt} on $J$ Then: \begin{iffc} \lhs $\mathcal{F}$ is an \gls{ultra} \rhs for every $A \subseteq J$ either $A \in \mathcal{F}$ or $J \setminus A \in \mathcal{F}$. \end{iffc} \end{fcprop} \noproof \begin{proof} \es{1}. \end{proof} \begin{fcprop}[] \label{prop:4.5} Assuming: - $J$ is a set - $\mathcal{F}$ a \gls{filt} on $J$ Then: there is an \gls{ultra} $\mathcal{U}$ such that $\mathcal{F} \subseteq \mathcal{U}$. \end{fcprop} \begin{proof}[Proof (sketch)] Let $\mathcal{X}$ be the set of \glspl{filt} extending $\mathcal{F}$, and partially order it by inclusion. Note every chain has an upper bound (take the union), so by Zorn's lemma we have a maximal element, which is a \gls{ultra} (by definition). \end{proof} \newpage \section{Ultraproducts} \begin{definition}[] \label{defn:5.1} Let $(A_j)_{j \in J}$ be a family of sets ($J \neq \emptyset$), with $A_j \neq \emptyset$ for all $j \in J$. Take $\mathcal{J}$ to be an \gls{ultra} on $J$, and define the following equivalence relation $\sim$ on $\prod_{j \in J} A_j$: \[ (a_j)_{j \in J} \sim (b_j)_{j \in J} \qquad \text{iff} \qquad \{j \in J : a_j = b_j \in \mathcal{U}\} .\] \end{definition} \begin{proposition}[] \label{prop:5.2} The relation $\sim$ defined above is an equivalence relation on $\prod_{j \in J} A_j$. \end{proposition} \begin{proof} Symmetric / reflexive is obvious. Transitivity: let $(a_j)_{j \in J}, (b_j)_{j \in J}, (c_j)_{j \in J} \in \prod_{j \in J} A_j$, and suppose $(a_j)_{j \in J} \sim (b_j)_{j \in J}$ and $(b_j)_{j \in J} \sim (c_j)_{j \in J}$. Let \begin{align*} F_{ab} &= \{j \in J : a_j = b_j\} \\ F_{bc} &= \{j \in J : b_j = c_j\} \\ F_{ac} &= \{j \in J : a_j = c_j\} \end{align*} Note $F_{ab}, F_{bc} \in \mathcal{U}$. Also, \[ \ub{F_{ab} \cap F_{bc}}_{\in \mathcal{U}} = \{j \in J : a_j = b_j = c_j\} \subseteq F_{ac} \] hence $F_{ac} \in \mathcal{U}$, i.e. $(a_j)_{j \in J} \sim (c_j)_{j \in J}$. \end{proof} \begin{fcdefn}[] \label{defn:5.3} Let $(A_j)_{j \in J}$ be a non-empty family of non-empty sets and $\mathcal{U}$ an \gls{ultra} on $J$. \begin{citems} \item Write $\prod_{j \in J} A_j / \mathcal{U}$ to be $\prod_{j \in J} A_j / \sim$ (where $\sim$ is defined as in \cref{defn:5.1}). \item $[(a_j)_{j \in J}]_{\mathcal{U}}$ is the equivalence class of $(a_j)_{j \in J}$ with respect to $\sim$. \item Let $B_j \subseteq A_j$ for every $j \in J$. Then \[ [(B_j)_{j \in J}]_{\mathcal{U}} = \left\{[(a_j)_{j \in J}] \in \prod_{j \in J} A_j / \mathcal{U} : \{j \in J : a_j \in B_j\} \in \mathcal{U}\right\} .\] \end{citems} \end{fcdefn} Is the third item well-defined? \begin{fcprop}[] \label{prop:5.4} Assuming: - $(A_j)_{j \in J}$, $(B_j)_{j \in J}$ satisfy $B_j \subseteq A_j$ for all $j$ - $(a_j)_{j \in J}, (b_j)_{j \in J} \in \prod_{j \in J} A_j$ satisfying $(a_j)_{j \in J} \sim (b_j)_{j \in J}$ Then: \begin{iffc} \lhs $\{j \in J : a_j \in B_j\} \in \mathcal{U}$ \rhs $\{j \in J : b_j \in B_j\} \in \mathcal{U}$. \end{iffc} \end{fcprop} \begin{proof} Know $(a_j)_{j \in J} \sim (b_j)_{j \in J}$. Define \begin{align*} U &= \{j \in J : a_j = b_j\} \in \mathcal{U} \\ V &= \{j \in J : a_j \in B_j\} \\ W &= \{j \in J : b_j \in B_j\} \end{align*} Note $U \cap V \subseteq W$ and $U \cap W \subseteq V$. If $V \in \mathcal{U}$ then $U \cap V \in \mathcal{U}$ so $W \in \mathcal{U}$. Similarly, if $W \in \mathcal{U}$ then $V \in \mathcal{U}$. \end{proof} So $[(B_j)_{j \in J}]$ is well-defined. \begin{fcprop}[] \label{prop:5.5} Assuming: - $(A_j)_{j \in J}$, $\mathcal{U}$, $\sim$ as usual. - $B_j, C_j \subseteq A_j$ Thens:[(1)] - $[(B_j)_{j \in J}] \cap [(C_j)_{j \in J}] = [(B_j \cap C_j)_{j \in J}]$. - $[(B_j)_{j \in J}] \cup [(C_j)_{j \in J}] = [(B_j \cup C_j)_{j \in J}]$. - $[(B_j)_{j \in J}] \setminus [(C_j)_{j \in J}] = [(B_j \setminus C_j)_{j \in J}]$. \end{fcprop} \noproof \begin{proof} \es{1}. \end{proof}