%! TEX root = MT.tex % vim: tw=50 % 01/02/2025 11AM \newpage \section{Categoricity} \begin{fcdefn}[$kappa$-categorical] \label{eg:3.1} % FIXME \glsnoundefn{kcat}{categorical}{categorical}% An $\mathcal{L}$-theory is \emph{$\kappa$-categorical} if it has a unique model of size $\kappa$ up to isomorphism. \end{fcdefn} For now, assume our theories have infinite models and that $\kappa \ge \aleph_0 + |\mathcal{L}|$. \begin{example} \label{eg:3.2} \phantom{} \begin{itemize} \item $\Th(\Nbb)$ when $\mathcal{L} = \emptyset$ is $\kappa$-\gls{kcat} for all $\kappa$. \item $\Th(\Qbb, +, 0)$ in $\mathcal{L}_{\text{group}}$ is $\kappa$-\gls{kcat} if and only if $\kappa = \aleph_0$. \item $\Th(\Qbb, <)$ in $\mathcal{L}_{\text{o}}$ is $\kappa$-\gls{kcat} if and only if $\kappa = \aleph_0$. \item $\Th(\Zbb, +, 0)$ in $\mathcal{L}_{\text{groups}}$ is $\kappa$-\gls{kcat} for no $\kappa$. \end{itemize} \end{example} So we can find four different cases... surprisingly this is all. \begin{fcthmstar}[Morley's Categoricity Theorem 1965] Assuming: - $T$ is a \gls{compt} theory in a countable language - $T$ is $\kappa$-\gls{kcat} for some uncountable $\kappa$ Then: it is $\kappa$-\gls{kcat} for all uncountable $\kappa$. \end{fcthmstar} \noproof We do not prove this theorem in this course. The statement is examinable, but the proof is not. \subsubsection*{Dense linear orders (with no endpoints)} \begin{fcdefn}[Theory of dense linear orders] \glsnoundefn{dlo}{DLO}{NA}% \label{defn:3.3} Let $\mathcal{L} = \{<\}$. We define the theory in axioms: \begin{cenum}[(i)] \item \emph{Irreflexive:} $\forall x, \neg (x < x)$. \item \emph{Transitive:} $\forall x, \forall y, \forall z, ((x < y \wedge y < z) \to x < z)$. \item \emph{Antisymmetric:} $\forall x, \forall y, (x \neq y \to (x < y \vee y < x))$. \item \emph{Dense:} $\forall x, \forall y, (x < y \to (\exists z (x < z < y))$. \item \emph{No endpoints:} $\forall x, \exists y, \exists z, (z < x < y)$. \end{cenum} \end{fcdefn} \begin{note*} \gls{dlo} is consistent, because $(\Qbb, <) \models \text{\gls{dlo}}$. \end{note*} \begin{fcthm}[Cantor 1895] \label{thm:3.4} \gls{dlo} is $\aleph_0$-\gls{kcat}. \end{fcthm} \begin{proof} Let $\mathcal{M}, \mathcal{N} \models \text{\gls{dlo}}$ with $M, N$ countable. We need to construct an $\mathcal{L}$-\gls{iso} $h : M \to N$, i.e. an order preserving bijection. We will use the \emph{back and forth method}. Let $M = \{a_1, a_2, \ldots\}$ and $N = \{b_1, b_2, \ldots\}$. We construct a series of functions $(h_n)_{n = 0}^\infty$ such that: \begin{enumerate}[(i)] \item $h_n : X_n \to Y_n$ is an order-preserving bijection. \item $X_n \subseteq X_{n + 1}, Y_n \subseteq Y_{n + 1}, h_n \subseteq h_{n + 1}$ for each $n$. \item $a_n \in X_n$, $b_n \in Y_n$. \end{enumerate} Once we have done this, $h = \bigcup_{n = 0}^\infty h_n$ is an order-preserving bijection $h : M \to N$ (i.e. an $\mathcal{L}$-\gls{iso}). Use induction. Base case: $X_0 = \{x_0\}$, $Y_0 = \{b_0\}$, $h_0(a_0) = b_0$. Inductive step: Suppose $h_n : X_n \to Y_n$ as required. ``Forth'': Construct an order preserving bijection $h_* : X_* \to Y_*$ extending $h_n$ with $a_{n + 1} \in X_*$. Enumerate $X_n = \{x_1, \ldots, x_k\}$ with $x_1 <^M x_2 <^M x_3 <^M \cdots <^M x_k$. Let $y_i = h(x_i)$ so that $y_1 <^M y_2 <^M \cdots <^M y_k$. \begin{center} \includegraphics[width=0.6\linewidth]{images/17cf53da753c4b3b.png} \end{center} Define $h_* = h_n \cup \{(a_{n + 1}, b)\}$ where $b \in N$ is chosen according to the following cases: \begin{itemize} \item If $a_{n + 1} = x_i$ for some $i \in \{1, \ldots, k\}$, then put $b = x_i$. \item If $a_{n + 1} < x_i$ for all $i \in \{1, \ldots, k\}$ then choose $b$ such that $b < y_i$ for all $i \in \{1, \ldots, k\}$ (possible since no endpoints). \item If $x_i < a_{n + 1}$ for all $i \in \{1, \ldots, k\}$, then choose $b$ such that $y_i < b$ for all $i \in \{1, \ldots, k\}$ (possible since no endpoints). \item If there is some $i \in \{1, \ldots, k - 1\}$ such that $x_i < a_{n + 1} < x_{i + 1}$, then choose $b$ such that $y_i < b < y_{i + 1}$ (possible since $M$ is dense). \end{itemize} Then $h_*$ is an order-preserving bijection and $a_{n + 1} \in X_{n + 1}$ as desired. ``Back'': We need to construct an order-preserving map $h_{n + 1} \to Y_{n + 1}$ extending $h_*$ with $b_{n + 1} \in Y_{n + 1}$. Exercise. Then $h_{n + 1}$ satisfies the conditions. \end{proof} \begin{note*} We used that $N, M$ were countable. \end{note*} The theory \gls{dlo} is not uncountably \gls{kcat}: Consider $(\Rbb, <)$, and consider $\Rbb \times \Qbb$ with the lexicographic order ($(a, b) < (c, d)$ if and only if $a < c$ or $a = c$ and $b < d$). These are both models of \gls{dlo} (and have the same cardinality), but are not isomorphic (e.g. because the first does not have any countable intervals, or because the second does not have all bounded suprema). \begin{fccoro}[] \label{coro:3.5} \gls{dlo} is \gls{compt}. \end{fccoro} \begin{proof} No finite models (because of the no end points axiom). If $\mathcal{M}, \mathcal{N} \models \text{\gls{dlo}}$, with both countable, then $M \mcong N$ and hence $M \ee N$. So by \nameref{thm:1.8}, \gls{dlo} is \gls{compt}. \end{proof}