%! TEX root = MT.tex % vim: tw=50 % 28/01/2025 11AM \begin{proof} Let $\ol{a} = (a_1, \ldots, a_n)$. Step 1: Terms. Proof by induction on term complexity. For the base case: \begin{itemize} \item For $t$ a constant, we have $h(t^M) = h(c^M) = c^N = t^N$. \item For $t$ a variable: $h(t^M(x_i)) = h(a_i) = t^N(h(a_i))$. \end{itemize} For the inductive step: Let $f$ be an $m$-ary function symbol. Assume that the claim holds for $t_1, \ldots, t_m$ whose free variables are amongst $x_1, \ldots, x_n$. Suppose $t = f(t_1, \ldots, t_m)$. Given $a_1, \ldots, a_n \in M$, we have \begin{align*} h(t^M(a_1, \ldots, a_n)) &= h(f^M(t_1^M(a_1, \ldots, a_n), \ldots, t_m^M(a_1, \ldots, a_n))) \\ &= f^N(h(t_1^M(\ol{a})), \ldots, h(t_m^M(\ol{a}))) &&\text{($f^N$ is an $\mathcal{L}$-\gls{iso})} \\ &= f^N(t_1^N(h_1(\ol{a})), \ldots, t_m^N(h(\ol{a}))) &&\text{(inductive step)} \\ &= t^N(h(\ol{a})) \end{align*} Step 2: Formulas. Base case: atomic formulas. Suppose $\varphi$ is $t_1 = t_2$. Then: \begin{align*} \mathcal{M} \models \varphi(\ol{a}) &\text{ iff } t_1^M(\ol{a}) = t_2^M(\ol{a}) \\ &\text{ iff } h(t_1^M(\ol{a})) = h(t_2^M(\ol{a})) &&\text{by bijectivity} \\ &\text{ iff } t_1^N(h(\ol{a})) = t_2^N(h(\ol{a})) &&\text{using step 1} \\ &\text{ iff } \mathcal{N} \models \varphi(\ol{a}) \end{align*} Case where $\varphi$ is $R(t_1, \ldots, t_m)$ left as an exercise. Inductive step: Assume statement holds for $\varphi$ and $\psi$. \begin{itemize} \item $\varphi \wedge \psi$, $\neg \varphi$ left as an exercise. \item $\forall x_n \varphi(x_1, \ldots, x_{n - 1}, x_n)$ (then $\exists$ will follow since it can be expressed using $\forall$). Let $a_1, \ldots, a_{n - 1} \in M$. Then \begin{align*} \mathcal{M} \models \forall x_n \varphi(a_1, \ldots, a_{n - 1}, x_n) &\text{ iff } \text{for all $b \in M$, $\mathcal{M} \models \varphi(a_1, \ldots, a_{n - 1}, b)$} \\ &\text{ iff } \text{for all $b \in M$, $\mathcal{N} \models \varphi(h(a_1), \ldots, h(a_{n - 1}), h(b))$} \\ &\text{ iff } \text{for all $c \in N$, $\mathcal{N} \models \varphi(h(a_1), \ldots, h(a_{n - 1}), c)$} \\ &\text{ iff } \mathcal{N} \models \forall x_n \varphi(h(a_1), \ldots, h(a_{n - 1}), x_n) \qedhere \end{align*} \end{itemize} \end{proof} \begin{notation*} \glssymboldefn{cong}% Write $\mathcal{N} \cong \mathcal{M}$ if there is an $\mathcal{L}$-\gls{iso} between them. \end{notation*} \begin{corollary} \label{coro:2.3} If $\mathcal{M} \mcong \mathcal{N}$, then $\mathcal{M} \ee \mathcal{N}$. \end{corollary} \begin{remark*} So far we have two equivalence relations on $\mathcal{L}$-structures: $\ee$ and $\mcong$. \end{remark*} \begin{fccoro}[] \label{coro:2.4} \begin{iffc} \lhs $h : \mathcal{M} \to \mathcal{N}$ is an $\mathcal{L}$-\gls{em} \rhs the conclusion of \cref{thm:2.2} holds for all quantifier free formulas $\varphi(x_1, \ldots, x_n)$. \end{iffc} \end{fccoro} \begin{iffproof} \rightimpl Clear from proof of \cref{thm:2.2}. \leftimpl Exercise (see \es{1}). \end{iffproof} \begin{fcdefn}[Elementary embedding] \label{defn:2.5} \glsnoundefn{eemb}{elementary embedding}{elementary embeddings}% An $\mathcal{L}$-\gls{homo} $h : \mathcal{M} \to \mathcal{N}$ is an \emph{elementary $\mathcal{L}$-embedding} if for any $\mathcal{L}$-formula $\varphi(\ol{x})$ and any $\ol{a} \in M$ (with $|\ol{x}| = |\ol{a}|$) we have \[ \mathcal{M} \models \varphi(\ol{a}) \qquad\text{iff}\qquad \mathcal{N} \models \varphi(h(\ol{a})) .\] \end{fcdefn} \begin{note*} $\mathcal{L}$-\glspl{iso} are \glsref[eemb]{elementary $\mathcal{L}$-embeddings}. \end{note*} \begin{fcdefn}[Substructure] \glsnoundefn{substruc}{substructure}{substructures}% \glsnoundefn{esubstruc}{elementary substructure}{elementary substructures}% \glsnoundefn{ext}{extension}{extensions}% \glsnoundefn{eext}{elementary extension}{elementary extensions}% Let $\mathcal{M}$ and $\mathcal{N}$ be $\mathcal{L}$-structures with $M \subseteq N$. Let $h : M \injto N$ be the inclusion map. Then we say that $\mathcal{M}$ is a \emph{substructure} (respectively \emph{elementary substructure}) of $\mathcal{N}$, written $\mathcal{M} \subseteq \mathcal{N}$ (respectively $\mathcal{M} \preccurlyeq \mathcal{N}$) if $h$ is an $\mathcal{L}$-\gls{em} (respectively \glsref[eemb]{elementary $\mathcal{L}$-embedding}). We may also say $\mathcal{N}$ is an extension (respectively elementary extension) of $\mathcal{M}$. \end{fcdefn} \begin{remark*} \phantom{} \begin{itemize} \item The notion of \gls{substruc} generalises subgroups, subrings, induced subgraphs. \item \glsref[esubstruc]{Elementary} \gls{substruc} is stronger (more particular to model theory). \item If $\mathcal{M} \esub \mathcal{N}$ then $\mathcal{M} \ee \mathcal{N}$ and $M \subseteq N$. \end{itemize} \end{remark*} \begin{example} \label{eg:2.7} Let $\mathcal{M} = (2\Zbb, <)$ and $\mathcal{N} = (\Zbb, <)$. Then $\mathcal{M} \ee \mathcal{N}$ and $M \subseteq N$ but $\mathcal{M} \not \esub \mathcal{N}$. Why? Consider $0, 2 \in M$, $\varphi(x_1, x_2) = \exists y (x_1 < y < x_2)$. Then $\mathcal{M} \not\models \varphi(0, 2)$, but $\mathcal{N} \models \varphi(0, 2)$. \end{example} \begin{fcthm}[Tarski-Vaught Test] \label{thm:2.8} \label{tarskivaught} Assuming: - $h : \mathcal{M} \to \mathcal{N}$ is an $\mathcal{L}$-\gls{em} Then: the following are equivalent: \begin{enumerate}[(i)] \item $h$ is an \elemb \item For every first order formula $\varphi(y, x_1, \ldots, x_n)$ and every $a_1, \ldots, a_n \in \mathcal{M}$, if there exists $y \in \mathcal{N}$ such that $\mathcal{N} \models \varphi(y, h(a_1), \ldots, h(a_n))$ then there exists $y \in \mathcal{M}$ such that $\mathcal{N} \models \varphi(h(y), h(a_1), \ldots, h(a_n))$. \end{enumerate} \end{fcthm} \begin{proof} \es{1}. \end{proof}