%! TEX root = MT.tex % vim: tw=50 % 25/01/2025 11AM % Part 1: Complete Theories \newpage \section{Complete Theories} \begin{fcdefn}[$T$ models a sentence] % [$T \models \varphi$] \label{defn:1.1} % Definition 1.1 Let $T$ be an $\mathcal{L}$-theory, $\varphi$ an $\mathcal{L}$-sentence. Then $T \models \varphi$ if every model of $T$ is a model of $\varphi$. \end{fcdefn} \begin{example*} $\emptyset \models \exists (x = x)$. $T_{\text{groups}} \models \forall x \forall y \forall z ((x * y = e \wedge x * z = e) \to y = z)$. \end{example*} \begin{fcdefn}[Complete theory] \label{defn:1.3} \glsadjdefn{compt}{complete}{theory}% % Definition 1.3 An $\mathcal{L}$-theory $T$ is \emph{complete} if for every $\mathcal{L}$-sentence $\varphi$, either $T \models \varphi$ or $T \models \neg \varphi$. \end{fcdefn} \begin{example} $T_{\text{groups}}$ is not complete, as (for example) it doesn't imply $\forall x \forall y(x + y = y + x)$ or $\neg \forall x \forall y(x + y = y + x)$. \end{example} \begin{fcdefn}[Theory of $M$] % [Theory of $\mathcal{M}$] \label{defn:1.4} \glsnoundefn{mtheory}{theory}{theories}% \glssymboldefn{Th}% Let $\mathcal{M}$ be an $\mathcal{L}$-structure. Then the \emph{theory of $\mathcal{M}$} \[ \mathrm{Th}_{\mathcal{L}}(\mathcal{M}) = \{\varphi : \text{$\varphi$ is an $\mathcal{L}$-sentence, and $\mathcal{M} \models \varphi$}\} .\] (can be written $\mathrm{Th}(\mathcal{M})$ when $\mathcal{L}$ is clear). \end{fcdefn} \begin{remark} \label{remark:1.5} $\Th_{\mathcal{L}}(\mathcal{M})$ is always \gls{compt}. \end{remark} \begin{fcdefn}[Elementarily equivalent] \label{defn:1.6} \glsadjdefn{ee}{elementarily equivalent}{models}% Two $\mathcal{L}$-structures are \emph{elementarily equivalent} if their \glspl{mtheory} are equal. Given $\mathcal{L}$-structures $\mathcal{M}, \mathcal{N}$, we write $\mathcal{M} \equiv_{\mathcal{L}} \mathcal{N}$ to mean $\Th_{\mathcal{L}}(\mathcal{M}) = \Th_{\mathcal{L}}(\mathcal{N})$. \end{fcdefn} \begin{note*} This is an equivalence relation on $\mathcal{L}$-structures. \end{note*} \textbf{Exercise:} Let $T$ be an $\mathcal{L}$-theory. Then the following are equivalent: \vspace{-1em} \begin{itemize} \item $T$ is complete \item For any $\mathcal{L}$-sentence $\varphi$, if $T \not\models \varphi$ then $T \models \neg \varphi$. \item Any two models of $T$ are elementarily equivalent. \end{itemize} \begin{example} Let $\mathcal{L} = \emptyset$ and $T_{\text{sets}} = \{\varphi_n : n \ge 2\}$, where \[ \varphi_n = \exists x_1 \cdots \exists x_n \bigwedge_{i \neq j} x_i \neq x_j .\] This forms the theory of infinite sets. Any infinite set models this, but also in this language we have that any two infinite sets are \gls{ee}. For example, \[ \Nbb \ee_{\mathcal{L}} \Rbb \ee_{\mathcal{L}} \Qbb \ee_{\mathcal{L}} \Cbb \ee_{\mathcal{L}} \mathcal{P}(\Cbb) .\] \end{example} \textbf{Question:} How do we prove a theory is \gls{compt}? \begin{fcthm}[Los-Vaught test] \label{thm:1.8} \label{losvaught} % [L\'os-Vaught test] Assuming: - $T$ is an $L$-theory - $T$ has no finite models - There exists some $K \ge |\mathcal{L}| + \aleph_0$ such that any two models of $T$ of cardinality $\kappa$ are \gls{ee} Then: $T$ is \gls{compt}. \end{fcthm} \begin{proof} Assume $T$ is not \gls{compt}, i.e. there is some $\mathcal{L}$-sentence $\sigma$ such that $T \cup \{\sigma\}$ and $T \cup \{\neg \sigma\}$ are both satisfiable. So we have $\mathcal{M} \models T \cup \{\sigma\}$, $\mathcal{N} \models T \cup \{\neg \sigma\}$. From (a) we know $M, N$ are infinite. By Lowenheim-Sk\"olem, we know we have $\mathcal{M}' \models T \cup \{\sigma\}$ and $\mathcal{N}' \models T \cup \{\neg \sigma\}$ with $|M'| = |N'| = \kappa$, contradicting (b). \end{proof} Reminder: By combining Lowenheim-Sk\"olem up and down, we get the following statement: If an $\mathcal{L}$-theory $T$ has an infinite model, then it has a model of size $\kappa$ for every $\kappa \ge |\mathcal{L}| + \aleph_0$. \newpage \section{Homomorphisms} \begin{fcdefn}[Homomorphism] \glsnoundefn{homo}{homomorphism}{homomorphisms}% \glsnoundefn{em}{embedding}{embeddings}% \glsnoundefn{iso}{isomorphism}{isomorphisms}% \label{defn:2.1} Let $\mathcal{M}, \mathcal{N}$ be $\mathcal{L}$-structures. A function $h : M \to N$ is an $\mathcal{L}$-homomorphism if: \begin{enumerate}[(i)] \item For an $n$-ary function symbol $f$, and $a_1, \ldots, a_n \in M$ we have \[ h(f^M(a_1, \ldots, a_n)) = f^N(h(a_1), \ldots, h(a_n)) .\] \item For an $n$-ary relation symbol $R$, and $a_1, \ldots, a_n \in M$ we have \[ (a_1, \ldots, a_n) \in R^m \qquad \text{iff} \qquad (h(a_1), \ldots, h(a_n)) \in R^N .\] \item For any constant symbol $c$, $h(c^M) = c^N$. \end{enumerate} We write $h : \mathcal{M} \to \mathcal{N}$ if $h$ is an $\mathcal{L}$-homomorphism. If $h$ is also injective then this is called an $\mathcal{L}$-embedding. If $h$ is also bijective then this is called an $\mathcal{L}$-isomorphism. \end{fcdefn} \begin{fcthm}[] \label{thm:2.2} Assuming: - $h : \mathcal{M} \to \mathcal{N}$ is an $\mathcal{L}$-\gls{iso} - $\varphi(x_1, \ldots, x_n)$ an $\mathcal{L}$-formula - $a_1, \ldots, a_n \in M$ Then: \[ \mathcal{M} \models \varphi(a_1, \ldots, a_n) \qquad \text{iff} \qquad N \models \varphi(h(a_1), \ldots, h(a_n)) .\] \end{fcthm}