%! TEX root = MT.tex % vim: tw=50 % 18/03/2025 11AM \begin{fcdefn}[Atomic, prime] \glsadjdefn{atomic}{atomic}{model}% \glsadjdefn{prime}{prime}{model}% \label{defn:16.5} Fix $\mathcal{M} \models T$. \begin{citems} \item We say $\mathcal{M}$ is \emph{atomic} if every $n$-type over $\emptyset$ realised in $\mathcal{M}$ is \gls{isol}. \item We say $\mathcal{M}$ is \emph{prime} if for any $\mathcal{N} \models T$ there is an elementary embedding $\mathcal{M} \to \mathcal{N}$. \end{citems} \end{fcdefn} \begin{example*} Let $K \models \acf_0$. Then $\ol{\Qbb} = \Qbb^{\text{alg}} \subseteq K$, and $\ol{\Qbb} < \kappa$ by \gls{qe}. So $\ol{\Qbb}$ is the prime model of $\acf_0$. \end{example*} Assume $\mathcal{L}$ is countable. \textbf{Fact:} $\mathcal{M}$ is \gls{prime} if and only if $\mathcal{M}$ is countable and \gls{atomic}. \begin{fcthm}[] \label{thm:16.6} Assuming: - $\mathcal{L}$ countable Then: the following are equivalent: \begin{cenum}[(i)] \item $T$ has a \gls{prime} model. \item $T$ has an \gls{atomic} model. \item For all $n \ge 1$, the \gls{isol} types are dense. \end{cenum} \end{fcthm} \begin{fcthm}[] \label{thm:16.7} \begin{cenum}[(a)] \item Suppose $|S_n(T)| < 2^{\aleph_0}$ for all $n$. Then $T$ has a \gls{prime} model and a countable saturated model. \item If $T$ has a countable saturated model, then it has a \gls{prime} model. \end{cenum} \end{fcthm} \begin{example*} What if $|S_n(T)| = 2^{\aleph_0}$? $\Th(\Zbb, +, 0)$ has no countable saturated model, no \gls{prime} model. $\Th(\Zbb, +, 0, 1)$ has a \gls{prime} model, but no countable saturated model. \end{example*} \begin{fcdefn}[] \glssymboldefn{Icount}% \label{defn:16.8} For $\kappa \ge \aleph_0$, let $I(T, \kappa)$ be the number of models of $T$ of size $\kappa$ (modulo isomorphism). \end{fcdefn} What size can $\Icount(T, \kappa)$ be? \begin{itemize} \item $1 \le \Icount(T, \kappa) \le 2^{\kappa}$. \item Vaught's conjecture (still open): If $\Icount(T, \aleph_0) < 2^{\aleph_0}$, then $\Icount(T, \aleph_0) \le \aleph_0$. Morley got $\le \aleph_1$. \end{itemize} \begin{fcthm}[Ryll-Nardsewski / Engeler / Svenonius 59] \label{thm:16.9} Assuming: - $\mathcal{L}$ countable - $T$ is a complete $\mathcal{L}$-theory with infinite models Then: the following are equivalent: \begin{enumerate}[(i)] \item $T$ is $\aleph_0$-\gls{kcat}. \item For all $n \ge 1$, every type in $S_n(T)$ is \gls{isol}. \item For all $n \ge 1$, $S_n(T)$ is finite. \item For all $n \ge 1$, the number of $\mathcal{L}$-formulas with $x_1, \ldots, x_n$ free variables is finite, modulo $T$. \end{enumerate} \end{fcthm} \begin{fccoro}[] \label{coro:16.10} Assuming: - $G$ an infinite group - $\Th(G)$ is $\aleph_0$-\gls{kcat} (in $\mathcal{L}_{\text{groups}}$) Then: $G$ has finite exponent (there exists $n \in \Nbb$ such that $\forall g \in G$, $g^n = 1$). \end{fccoro} \textbf{Fact:} Any abelian group with finite exponent has an $\aleph_0$-\gls{kcat} complete theory. \newpage \section{Whistle Stop Tour of Stability Theory} \begin{fcdefn}[] \label{defn:17.1} Given $\kappa \ge |\mathcal{L}| + \aleph_0$, we say $T$ is \emph{$\kappa$-stable} if for any $\mathcal{M} \models T$, $|\mathcal{M}| = \kappa$ we have $|S_1(M)| = \kappa$. We say $T$ is \emph{stable} if it is $\kappa$-stable for some $\kappa$. \end{fcdefn} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\acf_p$, $\tfdag$ ($\Qbb$-vector spaces) are $\kappa$-stable for all $\kappa \ge \aleph_0$. \item (Exercise) $T = \Th(\Zbb, +, 0, 1, (\equiv_n)_{n \ge 2})$ (where $\equiv_n$ is congruence modulo $n$). This is $\kappa$-stable for $\kappa > 2^{\aleph_0}$. \item If $\mathcal{M} \models \RG$ then $|S_1(M)| = 2^{|M|}$. \end{enumerate} \end{example*} \begin{center} \includegraphics[width=0.6\linewidth]{images/e2695fe1148041e0.png} \end{center} \textbf{Fact:} $\aleph_0$-stable theories have saturated models of all infinite cardinalities. \begin{fcdefn}[] \label{defn:17.2} Let $\varphi(x, y)$ be an $\mathcal{L}$-formula, $x, y$ types of finite length. We say $\varphi(x, y)$ has the \emph{order property} with respect to $T$ if there is some $\mathcal{M} \models T$, $(a_i)_{i \ge 0}$, $(b_j)_{j \ge 0}$ such that $\mathcal{M} \models \varphi(a_i, b_j)$ if and only if $i < j$. \end{fcdefn} \begin{example*} $\dlo$ has the order property, choose $(\Qbb, <) = \mathcal{M}$ and $a_i = b_i = i$ as your sequence. \end{example*} \begin{fcthm}[Fundamental Theorem of Stability (light)] \label{thm:17.3} The following are equivalent: \begin{cenum}[(i)] \item $T$ is stable. \item No $\mathcal{L}$-formula has the order property with respect to $T$. \item For any $\mathcal{M} \models T$, every $p \in S_n(\mathcal{M})$ is definable. \item \emph{Non-forking} is an independence relation. \end{cenum} \end{fcthm} \begin{fcdefn}[] \label{defn:17.4} A theory $T$ is \emph{strongly minimal} if $\forall \mathcal{M} \models T$ every definable subset of $\mathcal{M}$ is finite or cofinite. \end{fcdefn} \begin{remark*} $T$ strongly minimal implires $T$ is stable (count types). \end{remark*} \begin{fcdefn}[] \label{defn:17.5} Let $\mathcal{M} \models T$, $A \subseteq \mathcal{M}$. Then $b \in \operatorname{acl}(A)$ if there is an $\mathcal{L}_A$-formula $\phi(x)$ such that \[ \mathcal{M} \models \exists^{= n}_x \phi(x) \] and $\mathcal{M} \models \phi(b)$. \end{fcdefn} \begin{example} \label{eg:17.6} Let $T$ be strongly minimal. Then $\operatorname{acl}$ has the exchange property: \[ a \in \operatorname{acl}(Bc) \setminus \operatorname{acl}(B) \implies c \in \operatorname{acl}(Ba) .\] \end{example}