%! TEX root = MT.tex % vim: tw=50 % 08/03/2025 11AM \begin{notation*} \glssymboldefn{mequiv}% Given $\mathcal{M}$, $\ol{a}, \ol{b} \in M^n$, write $\ol{a} \equiv^M \ol{b}$ if $\tp^M(\ol{a}) \equiv^M \ol{b}$. So $\mathcal{M}$ is $\aleph_0$-\gls{homog} if and only if whenever $\ol{a} \equiv^M \ol{b}$ and $c \in M$, there exists $d \in M$ with $\ol{a} c \mequiv \ol{b} d$. \end{notation*} \begin{fclemma}[] \label{lemma:15.6} Assuming: - $T$ a complete $\mathcal{L}$-theory with infinite models - $\mathcal{M} \models T$ Then: there is an $\mathcal{N} \esup \mathcal{M}$ with $|N| \le |M| + |L|$ and $\mathcal{N}$ is $\aleph_0$-\gls{homog}. \end{fclemma} \begin{proof} \textbf{First claim:} For any $M \models T$, there is $\mathcal{N} \esup \mathcal{M}$ with $|N| \le |M| + |L|$ and for any $\ol{a}, \ol{b}, c$ from $M$ such that $\ol{a} \mequiv \ol{b}$ there is some $d \in N$ with $\ol{a}c \mequiv[N] \ol{b} d$. Proof of claim: Enumerate all $(\ol{a}, \ol{b}, \ol{c})$ as $(\ol{a}_\alpha, \ol{b}_\alpha, \ol{c}_\alpha)_{\alpha \le |M|}$. Now let $\mathcal{M}_0 = \mathcal{M}$, and use transfinite induction to form a chain $(\mathcal{M}_\alpha)_{\alpha < |M|}$. \begin{itemize} \item $\alpha$ is a limit ordinal: set $\mathcal{M}_\alpha = \bigcup_{i < \alpha} \mathcal{M}_i$ (then $|M_\alpha| \le |\alpha|(|M| + |L|) = |M| + |L|$ as $\alpha \le |M|$). \item Given $\alpha$ (not a limit ordinal), look at $(a_\alpha, b_\alpha, c_\alpha)$. Assume $\ol{a}_\alpha \mequiv[M_\alpha] \ol{b}_\alpha$ so $f_\alpha : \ol{a}_\alpha \to \ol{b}_\alpha$ \gls{partelem}. Then we apply \cref{prop:13.4} (Note the elementary super structure construnted here is of size $\le |M| + |L|$) to find $\mathcal{M}_{\alpha + 1} \esup \mathcal{M}_\alpha$ with $|\mathcal{M}_{\alpha + 1}| \le |\mathcal{M}_\alpha| + |L| \le |M| + |L|$ with a $d \in \mathcal{M}_{\alpha + 1}$ realising $f_\alpha(\tp(c_\alpha / a_\alpha))$. Then by construction, $(\ol{a}_\alpha c) \mequiv[\mathcal{M}_{\alpha + 1}] (\ol{b}_\alpha d)$. Now let $\mathcal{N} = \bigcup_{\alpha < |M|} \mathcal{M}_\alpha$. Note that we might have introduced new elements. Note $|N| \le |M|(|M| + |L|) = |M| + |L|$. We build a new chain $\mathcal{M} = \mathcal{N}_0 \esub \mathcal{N}_1 \esub \mathcal{N}_2 \esub \cdots$ of countably many steps with $|N_1| \le |M| + |L|$ and such that for any $\ol{a}, \ol{b}, \ol{c} \in N$, if $\ol{a} \mequiv \ol{b}$ then there is $d \in N_{i + 1}$ such that $\ol{a} c \mequiv[N_{i + 1}] \ol{b} d$. We do this by iterating the claim. FInally let $\mathcal{N} = \bigcup_{i < \aleph_0} \mathcal{N}_i$. Then: \begin{itemize} \item $|N| \le |M| + |L|$. \item $\mathcal{N}$ is $\aleph_0$-\gls{homog} as any $\ol{a}, \ol{b}, c$ from $\mathcal{N}$ lie in $\mathcal{N}_i$ for some $i$. \end{itemize} \end{itemize} \end{proof} \begin{fcdefn}[Saturated] \glsadjdefn{satur}{saturated}{model}% \label{defn:15.7} We say $\mathcal{M}$ is \emph{saturated} if it is $|M|$-saturated. \end{fcdefn} \begin{fcthm}[] \label{thm:15.8} Assuming: - $T$ a complete $\mathcal{L}$-theory with infinite models - $\mathcal{L}$ is countable Then: \begin{iffc} \lhs $T$ has a countable \gls{satur} model \rhs $S_n(T)$ is countable for every $n \ge 1$. \end{iffc} \end{fcthm} \begin{iffproof} \rightimpl $\mathcal{M} \models T$ countable, \gls{satur}. \begin{itemize} \item $M^n$ is countable for all $n \in \Nbb$. \item We have a map $p \to \ol{a} \models p$ ($p \in S_n(T)$, $\ol{a}$ some realisation). This is map since $\mathcal{M}$ \gls{satur}, and injective (because complete types). \end{itemize} So $S_n(T)$ is countable. \leftimpl Enumerate $\bigcup_{n \ge 1} S_n(T) = \{p_1, p_2, p_3, \ldots\}$. Fix a countable $M_0 \models T$, and build a chain $\mathcal{M}_0 \esub \mathcal{M}_1 \esub \mathcal{M}_2 \esub \cdots$ such that $\mathcal{M}_i$ realises $p_i$ and is countable, using \cref{prop:13.4}. Get $\mathcal{N} = \bigcup_{i \in \Nbb} \mathcal{M}_i$. Then $\mathcal{N} \models T$ and is countable. $\mathcal{N}$ realises all types over $\emptyset$. Apply \cref{lemma:15.6} to get $M \esup \mathcal{N}$ countable and $\aleph_0$-\gls{homog} structure. So by \cref{prop:15.5} is is $\aleph_0$-\gls{satur}. \end{iffproof} \begin{example} \label{eg:15.9} \phantom{} \begin{enumerate}[(i)] \item Let $T = \acf_p$ and let \[ F = \begin{cases} \Qbb & \text{if $p = 0$} \\ \Fbb_p & \text{if $p > \infty$} \end{cases} .\] Then \[ S_n(T) = \Spec(F[x_1, \ldots, x_n]) .\] Thus $S_n(T)$ is countable, since every ideal in $\Spec(F[x_1, \ldots, x_n])$ is finitely generated (Hilbert's basis theorem). So by \cref{thm:15.8}, $\acf_p$ has a countable \gls{satur} model which is the model of transcendence degree $\aleph_0$. Note: if $F \models \acf_p$ has transcendence degree $n$, the type determined by ``$x_1, \ldots, x_{n + 1}$'' is an algebraically independent set. \item Let $T = \mathrm{TFDAG}$ (torsion free, divisible abelian groups). This has a countable \gls{satur} model, which is the $\Qbb$-vector space of dimension $\aleph_0$. \item Let $T = \Th(\Zbb, +, 0)$. For $n \ge 1$, let $\delta_n(x)$ be the $\mathcal{L}$-formula $\exists y (x = ny)$, and let $\Pbb$ be the set of primes. Given $X \subseteq \Pbb$ finite, \[ q_x = \{\delta_n(x) : n \in X\} \cup \{\neg \delta_n(x) : n \in \Pbb \setminus X\} .\] $q_X$ is satisfiable in $\Zbb$, thus $\exists p_X \in S_1(T)$ with $q_x \le p_x$. If $X \neq Y$, then $p_X \neq p_Y$, so $|S_1(T)| \ge 2^{\aleph_0}$. By \cref{thm:15.8}, $T$ doesn't have a countable \gls{satur} model. \end{enumerate} \end{example} \begin{example} \label{eg:15.10} Let $M \models \RG$. We describe $\Snm_1^M(M)$. For $a \in M$, let $p_a \in \Snm_1^M(M)$ be the type containing ``$x = a$'' (exercise: why is this unique). FOr $V \le M$ set \[ p_V = \{x \neq a : a \in M\} \cup \{F(x, q) : a \in V\} \cup \{\neg E(x, a) : a \in M \setminus V\} .\] $p_V$ is a $1$-type with respect to $M$, not realised in $M$, determines a complete $1$-type, as we have determined all atomic formula, by $a \in p_V$ determines a complete type. So $\Snm_1^M(M) = \{p_a : a \in M\} \cup \{p_V : V \subseteq M\}$. $|\Snm_1^M(M)| = 2^{|M|}$. Note: in general $|\Snm_1^M(A)| \le 2^{(|A| + |L| + \aleph_0)}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/094828c7338347fa.png} \end{center} \end{example}