%! TEX root = MT.tex % vim: tw=50 % 04/03/2025 11AM \newpage \section{Type Spaces} \begin{fcdefnstar}[] Let $\mathcal{M}$ be an $\mathcal{L}$-structure, $A \subseteq M$. Given an $\mathcal{L}_A$-formula $\varphi(x_1, \ldots, x_n)$, define \[ [\varphi(x_1, \ldots, x_n)] = \mathcloze{\{p \in \Snm_n^{\mathcal{M}}(A) : \varphi(x_1, \ldots, x_n) \in p\}} .\] \end{fcdefnstar} We have the following basic properties: \begin{enumerate}[(i)] \item $\Snm_n^{\mathcal{M}}(A) = [\bigwedge_{i = 1}^n x_i = x_i]$. \item $[\varphi(\ol{x}) \wedge \varphi(\ol{x})] = [\varphi(\ol{x})] \cap [\psi(\ol{x})]$. \item $[\neg \varphi(\ol{x})] = \Snm_n^{\mathcal{M}}(A) \setminus [\varphi(\ol{x})]$. \end{enumerate} We define a topology on $\Snm_n^{\mathcal{M}}(A)$ (``the logic topology'') by taking $[\varphi(\ol{x})]$ for all $\mathcal{L}_A$-formulas $\varphi(\ol{x})$ as a basis of open sets. \begin{fcthm}[] \label{thm:14.1} $\Snm_n^{\mathcal{M}}(A)$ is a \cloze{totally disconnected compact Hausdorff space.} \end{fcthm} \begin{proof} Showing that it is a topology is left as an exercise. \textbf{Hausdorff:} Fix $p, q \in \Snm_n^{\mathcal{M}}(A)$ distinct. Then there is a $\varphi(\ol{x})$ $\mathcal{L}_A$-formula such that $\varphi(\ol{x}) \in p$ and $\neg \varphi(\ol{x}) \in q$. Then $p \in [\varphi(\ol{x})]$ and $q \in [\neg \varphi(\ol{x})]$ -- these are disjoint. \textbf{Compactness:} Sufficient to consider open covers consisting of basic open sets. SUppose we have $\mathcal{L}_A$-formulas $(\varphi_i(\ol{x}))_{i \in I}$ such that $\Snm_n^{\mathcal{M}}(A) = \bigcup_{i \in I} [\varphi_i(\ol{x})]$. Let $\Sigma = \{\neg \varphi_i(\ol{x}) : i \in I\}$. Claim: $\Sigma \cup \Th_A(\mathcal{M})$ is inconsistent. Proof of claim: Otherwise $\mathcal{N} \models \Th_A(\mathcal{M})$, $\ol{a} \in N^n$ such that $\ol{a} \models \Sigma$. Let $p = \tp^{\mathcal{N}}(\ol{a} / A) \in \Snm_n^{\mathcal{M}}(A)$. But $p \notin [\varphi_i(\ol{x})] ~\forall i \in I$, contradiction. So by compactness we have finite $I_0 \subseteq I$ with \[ \{\neg \varphi_i(\ol{x}) : i \in I_0\} \cup \Th_A(\mathcal{M}) \tag{$*$} \label{lec13eq1} \] inconsistent. Claim: $\Snm_n^{\mathcal{M}}(A) = \bigcup_{i \in I_0} [\varphi_i(\ol{x})]$. Proof: Fix $p \in \Snm_n^{\mathcal{M}}(A)$. We can realise $p$ in some $\mathcal{N} \models \Th_A(\mathcal{M})$, i.e. we have $\ol{a} \in N^n$ with $\ol{a} \models p$. By \eqref{lec13eq1}, we have $\mathcal{N} \models \varphi_i(\ol{a})$ for some $i \in I_0$. So $\varphi_i(\ol{x}) \in p$, so $p \in [\varphi_i(\ol{x})]$. \textbf{Totally disconnected:} In a compact Hausdorff space, we have totally disconnected if and only if two points are separated by a clopen set. All basic sets are clopen, so totally disconnected. \end{proof} \newpage \section{Saturated Models} \begin{fcdefn}[] \label{defn:15.1} \glsadjdefn{ksat}{saturated}{model}% Let $\mathcal{M}$ be an infinite $\mathcal{L}$-structure, and $\kappa > |\mathcal{L}| + \aleph_0$. We say $\mathcal{M}$ is $\kappa$-saturated if for any $A \subseteq M$ with $|A| < \kappa$, every type in $\Snm_n^{\mathcal{M}}(A)$ is realised in $\mathcal{M}$ for all $n$. \end{fcdefn} \begin{remark} \label{remark:15.2} \phantom{} \begin{enumerate}[(i)] \item Restricting to complete types is not important, as every \gls{ntype} over $A$ with respect to $M$ can be extended to a complete type. \item It suffices to assume $n = 1$ to prove $\kappa$-\glsref[ksat]{saturation}. \item If $\mathcal{M}$ is $\kappa$-\gls{ksat} then $|M| \ge \kappa$. $\{x \neq a : a \in M\}$ is a consistent \glsref[ntype]{$1$-type} over $M$ in $\mathcal{M}$. \end{enumerate} \end{remark} \begin{fcdefn}[Partial elementary / homogeneous] \glsadjdefn{partelem}{partial elementary}{function}% \glsadjdefn{homog}{homogeneous}{model}% \label{defn:15.3} Let $\mathcal{M}, \mathcal{N}$ be $\mathcal{L}$-structures, $A \subseteq M$, $B \subseteq N$. A function $f : A \to B$ is \emph{partial elementary} if for every $\mathcal{L}$-formulas $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in A$ we have \[ \mathcal{M} \models \varphi(\ol{a}) \iff \mathcal{N} \models \varphi(f(\ol{a})) .\] Given $\kappa \ge |\mathcal{L}| + \aleph_0$, $\mathcal{M}$ is \emph{$\kappa$-homogeneous} if for any $A \subseteq M$ with $|A| < \kappa$, any partial elementary map $f A \to M$ and any $c \in M$ there is some $d \in M$ with $f \cup \{(c, a)\}$ partial elementary. In other words, ``partial elementary maps can be extended''. \end{fcdefn} For the rest of this section, assume $T$ to be a complete $\mathcal{L}$-theory with infinite models. \begin{fcdefn}[] \label{defn:15.4} Define $S_n(T) = \Snm_n^{\mathcal{M}}(\emptyset)$ for any / some $\mathcal{M} \models T$ (because if $M, N \models T$, then $\Snm_n^{\mathcal{N}}(\emptyset) = \Snm_n^{\mathcal{M}}(\emptyset)$ as $\Th(\mathcal{M}) = \Th(\mathcal{N}) = T$). \end{fcdefn} \begin{fcprop}[] \label{prop:15.5} Assuming: - $T$ a complete $\mathcal{L}$-theory with infinite models - $\mathcal{M} \models T$ Then: \begin{iffc} \lhs $\mathcal{M}$ is $\aleph_0$-\gls{ksat} \rhs $\mathcal{M}$ is $\aleph_0$-\gls{homog} and $\mathcal{M}$ realises all types in $S_n(T)$, $n \ge 1$. \end{iffc} \end{fcprop} \begin{iffproof} \rightimpl Assume $\mathcal{M}$ is $\aleph_0$-\gls{ksat}. In particular, $\mathcal{M}$ realises all types in $S_n(T)$ ($\emptyset$ is finite). Fix some finite $A \subseteq M$, and a \gls{partelem} map $f : A \to M$. (Aim: find $d \in M$ such that $f \cup \{(c, d)\}$ is \gls{partelem}). Given $c \in M$, define $p \in \Snm_1^{\mathcal{M}}(f(A))$ to be such that \[ \varphi(x, f(\ol{a})) \iff \mathcal{M} \models \varphi(c, \ol{a}) \] (for all $\varphi(y, \ol{x})$ $\mathcal{L}$-formulas and $\ol{a} \in A$). Write $p = f(\tp^{\mathcal{M}}(c / \ol{a}))$. To show $p \in \Snm_1^{\mathcal{M}}(f(A))$, consider $\varphi(x, \ol{a}) \in p$. Then $\mathcal{M} \models \varphi(c, \ol{a})$, so $\mathcal{M} \models \exists x, \varphi(x, \ol{a})$, os $\mathcal{M} \models \exists \varphi(x, f(\ol{a}))$ as $f$ is \gls{partelem}. So $p$ is finitely satisfiable, and completeness follows from $\tp^{\mathcal{M}}(c / A)$ being complete. So as $\mathcal{M}$ is $\kappa$-\gls{ksat} we have $d \models p$ for some $d \in M$. Then $f \cup \{(c, d)\}$ is a \gls{partelem} map. \leftimpl Fix $a_1, \ldots, a_n \in M$, $p \in \Snm_1^{\mathcal{M}}(\{a_1, \ldots, a_n\})$. We want to show $p$ is realised in $\mathcal{M}$. Set \[ q = \{\varphi(y, x_1, \ldots, x_n) : \varphi(y, \ol{a}) \in p\} \in \Snm_{n + 1}^{\mathcal{M}}(T) .\] So by assumption, we have $d, b_1, \ldots, b_n$ with $(d, \ol{b}) \models q$. Consider $\tp(\ol{a} / \emptyset) = \tp(\ol{b} / \emptyset)$. So $f : b_i \to a_i$ is \gls{partelem}. Let $c \in M$ such that $f \cup \{(d, c)\}$ is \gls{partelem}. Then $\tp^{\mathcal{M}}(c, \ol{a}) = \tp^{\mathcal{M}}(d, \ol{b})$. So $(c, \ol{a}) \models q$ and $\tp(c / \ol{a}) = p$. \end{iffproof}