%! TEX root = MT.tex % vim: tw=50 % 01/03/2025 11AM \begin{proof} By assumption $p \cup \Th_A(\mathcal{M})$ is consistent. Need to show $p \cup \Th_M(\mathcal{M})$ is consistent. Fix $\Sigma \subseteq p \cup \Th_M(\mathcal{M})$ finite. $\Sigma \subseteq p \cup \{\varphi_1, \ldots, \varphi_t\}$, $\varphi_i$ an $\mathcal{L}_M$-sentence with $M \models \varphi_i$. Let $\varphi^*$ be $\bigwedge_{i = 1}^t \varphi_i$, then $\varphi^*$ can be written $\varphi^*(b_1, \ldots, b_m)$ where $b_1, \ldots, b_m \in M \setminus A$ and $\varphi^*(x_1, \ldots, x_m)$ an $\mathcal{L}_A$-formula. Since $\mathcal{M} \models \varphi^*(b_1, \ldots, b_m)$ we get $\mathcal{M} \models \exists \ol{v}, \varphi^*(v_1, \ldots, v_m)$, so $\exists \ol{v} \varphi^*(\ol{v}) \in \Th_A(\mathcal{M})$. So as $\Th_A(\mathcal{M}) \cup p$ is consistent, we have $N \models \Th_A(\mathcal{M}) \cup p$ with \begin{itemize} \item $\ol{c} \in N^m$ with $\mathcal{N} \models \varphi^*(\ol{c})$. \item $\ol{a} \in N^m$ with $\mathcal{N} \models p(\ol{a})$. \end{itemize} Expand $\mathcal{N}$ to an $\mathcal{L}_M$-structure, i.e. let \begin{itemize} \item $b_i^{\mathcal{N}} = c_i$ for $i \in \{1, \ldots, m\}$. \item $\ol{b}^{\mathcal{N}}$ arbitary for $b \in M \setminus \langle (A \cup \{b_1, \ldots, b_m\})\rangle$. \end{itemize} Then $\mathcal{N} \models \varphi(b_1, \ldots, b_m)$. So $\mathcal{N} \models \varphi^*$, so $\mathcal{N} \models \Sigma$. \end{proof} \begin{remark} \label{remark:13.5} If $\mathcal{M} \esub \mathcal{N}$ and $A \subseteq M$ then $\Snm_n^{\mathcal{M}}(A) = \Snm_n^{\mathcal{N}}(A)$ since $\Th_A(\mathcal{M}) = \Th_A(\mathcal{N})$. \end{remark} \begin{remark} \label{remark:13.6} $p$ is an \gls{ntype} over $A$ with respect to $M$ if and only if $\forall q \subseteq p$ finite, $\exists \ol{a} \in M^n$ such that $\ol{a} \not\models q$. \begin{iffproof} \rightimpl Clear. \leftimpl Choose $N \esup M$ realising $p$. Fix $q \subseteq p$ finite, $\varphi(\ol{x})$ the conjunction of all $\mathcal{L}_A$-formulas in $q$. Then $\mathcal{N} \models \exists \ol{x}, \varphi(\ol{x})$. So $\mathcal{M} \models \exists \ol{x}, \varphi(\ol{x})$, i.e. $q$ is realised in $\mathcal{M}$. \end{iffproof} \end{remark} \begin{example} \label{eg:13.7} Suppose $K \models \acf$, $A \subseteq K$. We want to describe $\Snm_n^K(A)$. Fix $p \in \Snm_n^K(A)$. By \gls{qe} we only need to consider quantifier free formulas. Moreover, \begin{align*} \varphi \wedge \psi \in p &\iff \varphi, \psi \in p \\ \neg \psi \in p &\iff \varphi \notin p \end{align*} So we can concentrate on atomic formulas $\varphi$, polynomials in variables $x_1, \ldots, x_n$ over the field generated by $A$, say $F$ (i.e. $F[\ol{x}]$). Let $I_p = \{f(\ol{x}) \in F[\ol{x}] : f(\ol{x}) = 0 \in p\}$. Then $I_p$ is a prime ideal and $p \mapsto I_p$ is a bijection $\Snm_n^K(A) \mapsto \Spec F[\ol{x}]$ ($\Spec F[\ol{x}]$ is the set of prime ideals of $F[\ol{x}]$). So $\Snm_1^K(A)$ consists of \[ \{p_a : a \in A\} \cup \{q\} ,\] where $p_a$ contains (and thus is determined by) $x = a$ and $q = \{x \neq a : a \in F\}$. $|\Snm_1^K(K)| = |K|$. \begin{center} \includegraphics[width=0.6\linewidth]{images/002a4b2779094708.png} \end{center} \end{example}