%! TEX root = MT.tex % vim: tw=50 % 27/02/2025 11AM \begin{fcdefn}[Rado graph] \glssymboldefn{rg}% \label{defn:12.4} Let $\mathcal{L} = \{E\}$, with $E$ a binary relation. A \emph{Rado} or \emph{Random} graph is a graph $(V, E)$ such that $V \neq \emptyset$ and for any finite disjoint $X, Y \subseteq V$ there is some $v \in V$ such that: \begin{itemize} \item $E(v, x)$ for all $x \in X$ \item $\neg(v, y)$ for all $y \in Y$ \end{itemize} We denote the theory of Rado graphs as $\mathrm{RC}$. It consists of \begin{itemize} \item Graph axioms (irreflexive and symmetric). \item For any $k \ge 1$ and $l \ge 1$, \[ \forall x_1, \ldots, x_k, \forall y_1, \ldots, y_l \left( \bigwedge_{i, j} x_i \neq y_j \to \exists v \left( \bigwedge_{i, j} E(v, x_i) \wedge \neg E(v, y_j) \right) \right) .\] \end{itemize} \end{fcdefn} \textbf{Facts:} \begin{itemize} \item $\RG$ is $\aleph_0$-\gls{kcat}. \item If $M \models \RG$ then every finite graph is an induced subgraph. \item Suppose $\mathcal{M}, \mathcal{N} \models \RG$ are two coutnable models, and $f : X \to Y$ is a graph isomorphism between $X \subseteq M$ (finite) and $Y \subseteq M$ (finite). Then $f$ extends to an isomorphism from $\mathcal{M}$ to $\mathcal{N}$. \end{itemize} \begin{fcthm}[] \label{thm:12.5} $\RG$ \cloze{has \gls{qe}.} \end{fcthm} \begin{proof} Option 1: Show $\RG \cup \Diag(A)$, with $A$ a finite graph is \gls{compt}. Option 2: Use (ii) of \cref{thm:11.4}. Fix $\mathcal{M}, \mathcal{N} \models \RG$, $A \subseteq \mathcal{M} \cap \mathcal{N}$. Fix a quantifier-free formula $\varphi(x_1, \ldots, x_n, y)$, $\ol{a} \in A^n$. Assume that there exists $b \in M$, $\mathcal{M} \models \varphi(\ol{a}, b)$. Want to show $\exists c \in N$ such that $\mathcal{N} \models \varphi(\ol{a}, c)$. Write $\varphi(\ol{x}, y)$ in disjunction normal form: \[ \bigvee_{s = 1}^k \bigwedge_{t = 1}^{l_s} \theta_{s, t}(\ol{x}, y) \] where $\theta_{s, t}(\ol{x}, y)$ is atomic or negated atomic. There is some $s \subseteq k$ such that $M \models \bigwedge_{t = 1}^{l_s} \theta_{s, t} (\ol{a}, b)$. Each of $\theta_{s, t}(\ol{x}, y)$ is one of $x_i = x_j$, $x_i = y$, $E(x_i, x_j)$, $E(x_i, y)$ and negations. If $x_i = y$ appears then $b = a_i \in A \subseteq \mathcal{N}$ and so $\mathcal{N} \models \varphi(\ol{a}, b)$. We may assume $x_i = y$ does not appear in $\theta_{s, t}$. Let \begin{align*} X &= \{a_i : \mathcal{M} \models E(a_i, b)\} \subseteq \ol{a} \\ Y &= \{a_i : \mathcal{M} \models \neg E(a_i, b)\} \subseteq \ol{a} \end{align*} Then $X$ and $Y$ are finite and disjoint. So we have $c \in N$ such that \begin{align*} N &\models E(a_i, c) \qquad \forall a_i \in X \\ N &\models \neg E(a_i, c) \qquad \forall a_i \in Y \\ c &\notin \{a_i, \ldots, a_n\} \end{align*} So $\mathcal{N} \models \bigwedge_{t = 1}^{l_s} \theta_{s, t}(\ol{a}, c)$ and thus $\mathcal{N} \models \varphi(\ol{a}, c)$. \end{proof} % Part 4: Types \newpage \section{Introduction to Types} \begin{fcdefnstar}[$L$-formula with parameters from $A$] Given a language $\mathcal{L}$, an $\mathcal{L}$-structure $\mathcal{M}$ and a subset $A \subseteq M$, we call an $\mathcal{L}_A$-formula an \emph{$\mathcal{L}$-formula with parameters from $A$}. Write these as $\varphi(\ol{x}, \ol{a})$ for $\varphi(\ol{x}, \ol{y})$ an $\mathcal{L}$-formula, and $\ol{a} \in A$ (identify with $\ul{a}^M$). \end{fcdefnstar} Suppose $\mathcal{N} \esup \mathcal{M}$. What does $\mathcal{N}$ look like from the point of $\mathcal{M}$? SIngle formulas don't give you much insight: suppose $a \in \mathcal{N}$, $\mathcal{N} \models \phi(a)$. Then there is some $a' \in \mathcal{M}$ with $\mathcal{M} \models \phi(a')$. This changes if you consider sets of infinitely many formulas. \begin{notation} \phantom{} \begin{itemize} \item Let $p$ be a set of formulas in free variables $x_1, \ldots, x_n$. We often write $\ul{p(x_1, \ldots, x_n)}$ and $\ul{p}$ interchangeably. \item Given $\mathcal{M}$ and $a_1, \ldots, a_n \in M$, we write $\mathcal{M} \models p(a_1, \ldots, a_n)$ if $\mathcal{M} \models \phi(a_1, \ldots, a_n)$ for every $\phi \in p$. \item We say $p$ is consistent if it is realised in some $\mathcal{L}$-structure. \end{itemize} \end{notation} Exercise: Show $p$ is consistent if and only if every finite subest of $p$ is consistent (\es{2}, Q8). \begin{fcdefn}[$n$-type] \glsnoundefn{ntype}{$n$-type}{$n$-types}% \glsadjdefn{comptype}{complete}{$n$-type}% \glssymboldefn{Snm}% \label{defn:13.2} Let $\mathcal{M}$ be an $\mathcal{L}$-structure and $A \subseteq M$. An \emph{$n$-type} over $A$ with respect to $\mathcal{M}$ is a set of $\mathcal{L}$-formulas with parameters from $A$, in free variables $x_1, \ldots, x_n$ such that $p \cup \Th_A(\mathcal{M})$ is consistent. An $n$-type is \emph{complete} if for every $\mathcal{L}_A$-formula with $n$ variables $\phi$, either $\phi \in p$ or $\neg \phi \in p$. Let $S_n^{\mathcal{M}}(A)$ denote the set of all complete $n$-types over $A$ with respect to $\mathcal{M}$. \end{fcdefn} \begin{fcdefn}[$tp^M$] \glssymboldefn{tp}% \label{defn:13.3} Given $a_1, \ldots, a_n \in \mathcal{M}$, let $\mathrm{tp}^{\mathcal{M}}(a_1, \ldots, a_n / A)$ be the set of all $\mathcal{L}_A$-formulas $\phi(x_1, \ldots, x_n)$ such that $\mathcal{M} \models \phi(a_1, \ldots, a_n)$ (usually $a_i \notin A$). $\mathrm{tp}^{\mathcal{M}}(\ol{a} / A) \in \Snm_n^{\mathcal{M}}(A)$ and $\ol{a} \models \mathrm{tp}^{\mathcal{M}}(\ol{a} / A)$. \end{fcdefn} \begin{fcprop}[] \label{prop:13.4} Assuming: - $p \in \Snm_n^{\mathcal{M}}(A)$ Then: there is $\mathcal{N} \esup \mathcal{M}$ with $\ol{a} \in N^n$ such that $p = \tp^{\mathcal{N}}(\ol{a} / A)$. \end{fcprop}