%! TEX root = MT.tex % vim: tw=50 % 22/02/2025 11AM \item[(iii) $\implies$ (ii)] Let $\mathcal{M}, \mathcal{N} \models T$, $A \subseteq \mathcal{M}$, $A \subseteq \mathcal{N}$. Let $\varphi(\ol{x}, y)$ be a quantifier free formula and let $\ol{a} \in A$ such that $M \models \exists y \varphi(\ol{a}, y)$. As $A \subseteq \mathcal{M}$, $A \subseteq \mathcal{N}$, we have $\mathcal{M}, \mathcal{N} \models T \cup \Diag(A)$, so by (iii) we have $\mathcal{M} \ee_{\mathcal{L}_A} \mathcal{N}$ so $\mathcal{N} \models \exists \varphi(\ol{a}, y)$. \item[(ii) $\implies$ (i)] We want to show \gls{qe}. By \cref{lemma:11.3}, it is sufficient to show for $\varphi(\ol{x}, y)$ quantifier free, we can find $\psi(\ol{x})$ quantifier free such that \[ T \models \forall \ol{x}(\exists y, \varphi(\ol{x}, y) \leftrightarrow \psi(\ol{x})) .\] Let $\mathcal{L}^* = \mathcal{L} \cup \{c_1, \ldots, c_n\}$ where each $c_i$ is a new constant (with $n = |\ol{x}|$). Let \[ \Gamma = \{\psi(\ol{x}) : \psi(\ol{x}) \text{ quantifier free formula such that } T \models \forall \ol{x}, (\exists y, \varphi(\ol{x}, y) \to \psi(\ol{x}))\} .\] In definable sets: \begin{center} \includegraphics[width=0.6\linewidth]{images/3981abbde52f4ca3.png} \end{center} Claim: $T \cup \Gamma \models \exists y, \varphi(\ol{x}, y)$. Proof: Suppose not. Then there is an $\mathcal{L}^*$-structure \[ \mathcal{N} \models T \cup \Gamma \cup \{\neg \exists y, \varphi(\eps, y)\} .\] Let $a_i = c_i^N$, and let $A \subseteq \mathcal{N}$ be the \gls{substruc} generated by $a_1, \ldots, a_n$ in $N$. Then $\mathcal{N} \models T$, $A \subseteq \mathcal{N}$, $\mathcal{N} \models \neg \exists y, \varphi(\ol{c}, y)$. Any $b \in A$ is of the form $t^N(\ol{a})$ for an $\mathcal{L}$-term $t$ (exercise). So $\Diag(A)$ can be viewed as an $\mathcal{L}^*$-structure by replacing $\ul{b}$ ($b = t^N(\ol{a})$) with $t(\ol{c})$ in $\mathcal{L}^*$. Let \[ \Sigma = T \cup \Diag(A) \cup \{\exists y, \varphi(\ol{x}, y)\} .\] IDEA: build $M \models \Sigma$, $M \models T \cup \Diag(A)$ and $M \models \exists y, \varphi(\ol{a}, Y)$, contradicting (ii). Suffices to prove $\Sigma$ is consistent. Assume $\Sigma$ is inconsistent. Then by compactness we have $\psi_1(\ol{x}), \ldots, \psi_n(\ol{x})$ quantifier free $\mathcal{L}$-formulas with \begin{itemize} \item $\psi_1(\ol{c}), \ldots, \psi_m(\ol{c}) \in \Diag(A)$. \item $T \cup \left\{ \bigwedge_{i = 1}^m \psi_i(\ol{c})\right\} \cup \{\exists y, \varphi(\ol{c}, y)\}$ is unsatisfiable. \end{itemize} In definable sets: \begin{center} \includegraphics[width=0.6\linewidth]{images/5e79c9c01721419d.png} \end{center} Let $\psi(\ol{x})$ be $\neg \bigwedge_{i = 1}^m \psi_i(\ol{x})$, then $T \models \exists y, \varphi(\ol{c}, y) \to \psi(\ol{c})$. So $T \models \forall \ol{x} (\exists y, \varphi(\ol{x}, y) \to \psi(\ol{x}))$ so $\psi(\ol{c}) \in \Gamma$. So $\mathcal{N} \models \psi(\ol{c})$ but also $\mathcal{N} \models \Diag(A)$ ($A \subseteq \mathcal{N}$). Then \[ N \models \ub{\bigwedge_{i = 1}^m \psi_i(\ol{c})}_{\in \Diag(A)} = \neg\psi(\ol{c}) \] contradiction. So by compactness, $\Sigma$ is consistent. This proves the claim. Reminder: the claim was that $T \cup \Gamma \models \exists y, \varphi(\ol{x}, y)$. So by compactness, there are $\psi_1(\ol{x}), \ldots, \psi_m(\ol{x})$ quantifier free such that \[ T \cup \ub{\{\psi(\ol{c}), \ldots, \psi_m(\ol{c})\}}_{\subseteq \Gamma} \models \exists y, \varphi(\ol{x}, y) .\] Recall \[ T \models \forall \ol{x} (\exists y, \varphi(\ol{x}, y) \to \bigwedge_{i = 1}^m \psi_i(\ol{x})) \] by choice of $n$. Let \[ \psi(\ol{x}) = \bigwedge_{i = 1}^m \psi_i(\ol{x}) .\] Then \[ T \models \psi(\ol{c}) \to \exists y, \varphi(\ol{c}, y) \] hence \[ T \models \forall \ol{x} (\psi(\ol{x}) \to \exists y, \varphi(\ol{x}, y)) .\] Thus $T \models \forall \ol{x}, (\psi(\ol{x}) \leftrightarrow \exists y, \varphi(\ol{x}, y))$. \qedhere \end{enumerate} \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item In (iii) we may assume $A \subseteq M \models T$, as otherwise $T \cup \Diag(A)$ is inconsistent and hence trivially \gls{compt}. \item In (ii) and (iii) we may assume $\mathcal{A}$ is finitely generated. \end{enumerate} \end{remark*} \newpage \section{Examples} \begin{fcthm}[] \label{thm:12.1} $\acf$ has \cloze{\gls{qe}}. \end{fcthm} \begin{proof} We will show that condition \cref{thm:11.4}(iii) holds. So we need to show that for any finitely generated $A$, $T \cup \Diag(A)$ is \gls{compt}. Fix a finitely generated $\mathcal{L}$-structure $A$ and show $\acf \cup \Diag(A)$ is \gls{compt}. Use \nameref{losvaught}. Fix $K_1, K_2 \models \acf \cup \Diag(A)$ uncountable, wiht $|K_1| = |K_2|$. $A$ is a finitely generated integral domain contained in $K_1, K_2$. So since $A$ contains $1$, it determines the characteristic. So $\charr(K_1) = \charr(K_2)$. So $K_1 \mcong K_2$ (in $\mathcal{L}_{\text{rings}}$). Need an $\mathcal{L}_A$-isomorphism, i.e. an isomorphism $\Phi : K_1 \to K_2$ preserving $A$. Consider $F_i$ the fraction field of $A$ in $K_i$. The field of fractions of an integral domain is unique up to isomorphism, i.e. $\exists \tau : F_1 \to F_2$ preserves $A$ pointwise. $A$ is finitely generated (hence finite $\trdeg$), so $\trdeg(K_1 / F_1) = \trdeg(K_2 / F_2)$. Therefore $\tau$ extends to $\tau^* : K_1 \to K_2$ fixing $A$ pointwise. So $K_1 \mcong_{\mathcal{L}_A} K_2$. \end{proof} \begin{fcdefn}[Constructible] \label{defn:12.2} Let $F$ be a field. We say that $X \subseteq F^n$ is \emph{constructible} if it is a boolean combination of subsets of $F^n$ defined by $p(x_1, \ldots, x_n) = 0$ for $p(\ol{x}) \in F[\ol{x}]$. \end{fcdefn} \begin{fccoro}[Chevalley's Theorem] Assuming: - $K \models \acf$ - $X \subseteq K^n$ a constructible set Then: the projection \[ Y = \{(a_1, \ldots, a_{n - 1}) \in K^{n - 1} : (\ol{a}, b) \in X \text{ for some $b \in K$}\} \] of $X$ is also constructible. \end{fccoro}