Theorem 11.4.
Assuming that:
T
an
L
-theory
Then
the following are equivalent:
(i)
T
has
quantifier elimination
(ii)
Let
M
,
N
⊨
T
,
A
⊆
M
,
A
⊆
N
(
substructures
). For any quantifier-free formula
φ
(
x
1
,
…
,
x
n
,
y
)
and tuple
a
¯
∈
A
, if
M
⊨
∃
y
,
φ
(
a
¯
,
y
)
then
N
⊨
∃
y
,
φ
(
a
¯
,
y
)
.
(iii)
For any
L
-structure
A
,
T
∪
D
(
A
)
is a
complete
L
A
-theory.