Proposition 5.5.
Assuming that:
(
A
j
)
j
∈
J
,
U
,
∼
as usual.
B
j
,
C
j
⊆
A
j
Then
(1)
[
(
B
j
)
j
∈
J
]
∩
[
(
C
j
)
j
∈
J
]
=
[
(
B
j
∩
C
j
)
j
∈
J
]
.
(2)
[
(
B
j
)
j
∈
J
]
∪
[
(
C
j
)
j
∈
J
]
=
[
(
B
j
∪
C
j
)
j
∈
J
]
.
(3)
[
(
B
j
)
j
∈
J
]
∖
[
(
C
j
)
j
∈
J
]
=
[
(
B
j
∖
C
j
)
j
∈
J
]
.