Definition 3.3
(Theory of dense linear orders)
.
Let
L
=
{
<
}
. We define the theory in axioms:
(i)
Irreflexive:
∀
x
,
¬
(
x
<
x
)
.
(ii)
Transitive:
∀
x
,
∀
y
,
∀
z
,
(
(
x
<
y
∧
y
<
z
)
→
x
<
z
)
.
(iii)
Antisymmetric:
∀
x
,
∀
y
,
(
x
≠
y
→
(
x
<
y
∨
y
<
x
)
)
.
(iv)
Dense:
∀
x
,
∀
y
,
(
x
<
y
→
(
∃
z
(
x
<
z
<
y
)
)
.
(v)
No endpoints:
∀
x
,
∃
y
,
∃
z
,
(
z
<
x
<
y
)
.