%! TEX root = FR.tex % vim: tw=50 % 10/02/2025 10AM \newpage \section{Tube incidence implications of Fourier restriction} Last time: LOCALLY CONSTANT PROPERTY (think of it more as ``heuristic''). If $\supp \ft f \subseteq B_1$ then \begin{enumerate}[(1)] \item Imagine $|f| \sim \text{const}$ on unit balls. \item $f = \invft{(\ft{\varphi_{B_1}})} = f * \invft{\varphi_{B_1}}$. \end{enumerate} What if $\supp \ft f \subseteq B_\lambda(0)$ (so $|f| \sim \text{const}$ on $\lambda^{-1}$-balls)? \[ f = \invft{(\ft f \varphi_{B_\lambda})} = f * \invft{\varphi_{B_\lambda}} ,\] where $\varphi_{B_\lambda}(\xi) = \varphi_{B_1}(\lambda^{-1} \xi)$. \[ \invft{\varphi_{B_\lambda}}(x) = \int_{\Rbb^n} e^{2\pi i x \cdot \xi} \varphi_{B_1}(\lambda^{-1} \xi) \dd \xi = \lambda^n \int_{\Rbb^n} e^{2\pi i(\lambda x) \cdot \xi} \varphi_{B_1}(\xi) \dd \xi = \lambda^n \invft{\varphi_{B_1}}(\lambda x) .\] $* |\invft{\varphi_{B_1}}|$ is approximately averaging over a $1$-ball. $* |\invft{\varphi_{B_\lambda}}|$ is approximately averaging over $\lambda^{-1}$-balls. What about $\supp \ft f \subseteq B_\lambda(\ol{v})$? Same thing happens, because $e^{ix \cdot {\text{something}}} f$ will have Fourier support in $B_\lambda(0)$, and taking absolute values means we don't notice the $e^{ix \cdot \text{something}}$ (modulation). Returning to $R_{\mathcal{P}^{n - 1}}^*(q' \to p') \implies R_{\mathcal{P}^{n - 1}}^{*, \text{loc}}(q' \to p')$. \[ \int_{B_R} |f(x)|^{p'} \dd x \lesssim \int_{B_R} |f(x) \varphi_{B_R}(x)|^{p'} \dd x \] $\varphi_{B_R}(x) \in \mathcal{S}(\Rbb^n)$, $|\varphi_{B_R}| \sim 1$ on $B_R$, $\supp \ft{\varphi_{B_R}} \subseteq B_{R^{-1}}(0)$. Last lecture $\to$ \[ \int_{I_{R^{-1}}} \left( \int_{\substack{|\xi'| < 1 \\ \xi' \in \Rbb^{n - 1}}} |\ft f * \ft{\varphi_{B_R}} (\xi', |\xi'|^2 + \xi_n)|^{q'} \dd \xi'\right) \stackrel{(*)}{\lesssim} (R^{-1})^{1 - \frac{p'}{q'}} \left( \int_{\xi \in \Rbb^n} |\ft f(\xi)|^{q'} \dd \xi \right)^{\frac{p'}{q'}} .\] Can choose $\ft{\varphi_{B_R}}$ such that \begin{itemize} \item $|\ft{\varphi_{B_R}}| \sim R^n \chi_{B_{R^{-1}}(0)}$. \item $\|\ft{\varphi_{B_R}}\|_1 \sim 1$. \end{itemize} \textbf{Case 1:} $\frac{p'}{q'} \le 1$. LHS of $(*)$ (using H\"older) is \begin{align*} &\le |I_{R^{-1}}|^{1 - \frac{p'}{q'}} \left( \int_{I_{R^{-1}}} \int_{|\xi'| < 1} (|\ft f| * |\ft{\varphi_{B_R}}|^{\frac{1}{q'} + \frac{1}{q}}(\xi', |\xi'|^2 + \xi_n))^{q'} \dd \xi' \dd \xi_n \right)^{\frac{p'}{q'}} \\ &\sim |I_{R^{-1}}|^{1 - \frac{p'}{q'}} \left( \int_{\Rbb^n} (|\ft f| * |\ft{\varphi_{B_R}}|(\xi))^{q'} \dd \dd\xi \right)^{\frac{p'}{q'}} \\ &\le \left( \int |\ft f|^{q'}(\xi - \eta) |\ft{\varphi_{B_R}}|(\eta) \dd \eta \right)^{\frac{1}{q'}} \ub{\left( \int |\ft{\varphi_{B_R}}|^{\frac{q}{q}} \right)^{\frac{1}{q}}}_{\sim 1} &&\text{(Holder)} \\ &\lesssim |I_{R^{-1}}|^{1 - \frac{p'}{q'}} \left( \int_{\Rbb^n} \int_{\Rbb^n} |\ft f|^{q'} (\xi - \eta) |\ft{\varphi_{B_R}}|(\eta) \dd \eta \dd \xi \right)^{\frac{p'}{q'}} \\ &\sim |I_{R^{-1}}|^{1 - \frac{p'}{q'}} \left( \int_{\Rbb^n |\ft f|^{q'}(\xi) \dd \xi} \right)^{\frac{p'}{q'}} \end{align*} \textbf{Case 2:} $\frac{p'}{q'} > 1$. Use $\mathcal{P}^1 \subseteq \Rbb^2$ for intuition. \begin{center} \includegraphics[width=0.6\linewidth]{images/27d5e85a481544c7.png} \end{center} Imagine a function $g$ which is approximately constant on each $R^{-1}$ cube $Q$. Think of $g$ as $g = \sum_Q g_Q$. \[ \int_{I_{R^{-1}}} \left( \int_{|t| < 1} g(t, t^2 + \xi_2) \dd t \right)^{\frac{p'}{q'}} \dd \xi_2 .\] Note \[ \int_{|t| < 1} g(t, t^2 + \xi_2) \dd t \sim g_Q .\] Therefore, \[ \int_{|t| < 1} g(t, t^2 + \xi_2) \dd t \sim C \] if $|\xi_2| \le cR^{-1}$. ($\le C$ for all $\xi_2 \in I_{R^{-1}}$). $|(P' + (0, \xi_2)) \cap Q| \sim R^{-1}$ for $|\xi_2| \le cR^{-1}$. $\sim |I_{R^{-1}}|^{1 - \frac{p'}{q} + \frac{p}{q'}} C^{\frac{p'}{q'}} = |I_{R^{-1}}|^{1 - \frac{p'}{q'}} (|I_{R^{-1}}| C)^{\frac{p'}{q'}} \left( \int_{R^{-1}} \int_{|t| < 1} g(t, t^2 + \xi_2) \dd t \dd \xi_2 \right)^{\frac{p'}{q'}}$ Important: locally constant property means we didn't need $\frac{p'}{q'} < 1$, like before. Make the intuition rigorous. \[ \text{LHS of $(*)$} \lesssim |I_{R^{-1}}| \max_{\xi_2 \in I_{R^{-1}}} \left( \int_{|\xi'| < 1} (|\ft f| * |\ft{\varphi_{B_R}}|(\xi', |\xi'|^2 + \xi_n))^{q'} \dd \xi'\right)^{\frac{p'}{q'}} \] Consider the integral: \begin{align*} \int_{|\xi'| < 1} (|\ft f| * |\ft{\varphi_{B_R}}|(\xi', |\xi'|^2 + \xi_n))^{q'} \dd \xi' &= \int_{|\xi'| < 1} \left( \int_{\Rbb^n} |\ft f|(\eta) |\ft{\varphi_{B_R}}|((\xi', |\xi'|^2 + \xi_n) - \eta) \dd \eta \right)^{q'} \dd \xi' \\ &\le \int_{|\xi'| < 1} \left( \int_{\Rbb^n} |\ft f|^{q'} (\eta) |\ft{\varphi_{B_R}}|((\xi', |\xi'|^2 + \xi_n) - \eta) \dd \eta \right) \dd \xi' &&\text{Same pointwise Holder} \\ &\sim R^n (R^{-1})^{n - 1} \int_{\Rbb^n} |\ft f|^{q'}(\eta) \dd \eta \\ &\sim R^1 \int_{\Rbb^n} |\ft f|^{q'} \\ &\lesssim (R^{-1})^1 \cdot R^{\frac{p'}{q'}} \left( \int |\ft f|^{q'} \right)^{\frac{p'}{q'}} \end{align*}