%! TEX root = FR.tex % vim: tw=50 % 07/02/2025 10AM $R_{\mathcal{P}^{n - 1}}^*(q' \to p') \implies R_{\mathcal{P}^{n - 1}}^{*, \text{loc}}(q' \to p')$ continued. Spatial: $x, f(x), Eg(x)$ \[ \boxed{\int_{\Rbb^n} |f(x)|^{p'} \dd x} \] \[ \int_{\Rbb^n} |Eg(x)|^{p'} \dd x \] \begin{center} \includegraphics[width=0.3\linewidth]{images/991d92625ae644d1.png} \end{center} Frequency $\xi$: \begin{center} \includegraphics[width=0.3\linewidth]{images/065de0e9d77b44da.png} \end{center} $g(\xi', |\xi'|^2) = g(\xi')$, $\supp \ft f \subseteq \mathcal{N}_{R^{-1}}(\mathcal{P}^{n - 1})$, \[ \int_{\mathcal{N}_{R^{-1}}(\mathcal{P}^{n - 1})} |\ft f(\xi)|^{q'} \dd \xi \] \[ \int_{|\xi'| < 1} |g(\xi')|^{q'} \dd \xi' .\] \[ \int_{B_R} |f(x)|^{p'} \dd x \le \cdots \stackrel{(*)}{\le} R^{-(p' - 1)} \int_{I_{R^{-1}}} \left( \int_{|\xi'| < 1} |g_{\xi_n}(\xi')|^{q'} \dd \xi' \right)^{\frac{p'}{q'}} \dd \xi_n .\] Aiming for \[ (*) \le R^{-\frac{p'}{q}} \left( \int_{I_{R^{-1}}} \int_{|\xi'| < 1} |g_{\xi_n}(\xi')|^{q'} \dd \xi' \right)^{\frac{p'}{q'}} .\] Lucky case: $\frac{p'}{q'} \le 1$. \[ (*) \stackrel{\text{H\"older's inequality in $\xi_n$}}{\le} R^{-(p' - 1)} |I_{R^{-1}}|^{1 - \frac{p'}{q'}} \left( \int_{I_{R^{-1}}} \int_{|\xi'| < 1} |g_{\xi_n}(\xi')|^{q'} \dd \xi' \dd \xi_n \right)^{\frac{p'}{q'}} \] $R^{-(p' - 1)} (R^{-1})^{1 - \frac{p'}{q'}} = R^{-\frac{p'}{q}}$ ($1 = \frac{1}{q} + \frac{1}{q'}$) Unlucky case: $\frac{p'}{q'} > 1$. H\"older's inequality goes in the wrong direction: \[ \int_A h \le |A|^{1 - \frac{1}{s}} \left( \int_A h^s \right)^{\frac{1}{s}} \] for all $s \ge 1$, $h \ge 0$. This is equality if $h$ is constant on $A$. PAUSE THIS. \subsubsection*{Useful Harmonic Analysis tool} The locally constant property. Convolution: Let $f, g \in \mathcal{S}(\Rbb^n)$. Define $f * g \in \mathcal{S}(\Rbb^n)$ by \[ f * g(x) = \int_{\Rbb^n} f(x - y) g(y) \dd y = \int_{\Rbb^n} f(Y) g(x - y) \dd y .\] See Young's convolution: \[ \|f * g\|_{L^r} \le \|f\|_p \|g\|_q \] when $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. \begin{example*} $g = \chi_B$ ($B$ is the unit ball in $\Rbb^n$), \[ f * \chi_B(x) = \int_{y \in B} f(x - y) \dd y \] RHS is ``average value of $f$ on $B(x)$''. ``$f * \chi_B$ is approximately constant on balls of radius $\sim 1$''. \end{example*} \textbf{Support property:} $\supp f = A$, $\supp g = B$, $\supp f * g \subseteq A + B = \{a + b : a \in A, b \in B\}$. \textbf{Convolution and Fourier Transform:} $\ft{fg} = \ft f * \ft g$. \textbf{Locally constant property:} Let $f \in \mathcal{S}(\Rbb^n)$, $\supp \ft f \subseteq B_1(0)$. Then for any unit ball $B' \subseteq \Rbb^n$ and any $x \in B'$, \[ \|f\|_{L^\infty(B')} \lesssim_m \int_{\Rbb^n} |f|(x - y) \frac{1}{(1 + |y|^2)^m} \dd y .\] $\frac{1}{(1 + |y|^2)^m}$ is $\sim 1$ on $|y| \lesssim 1$. \begin{center} \includegraphics[width=0.6\linewidth]{images/11afd5390c034637.png} \end{center} Digesting $f \ge 0$. For any unit interval $I' \subseteq \Rbb^n$, $x \in I'$, \[ \|f\|_{L^\infty(I')} \le \int_{\left( -\half, \half \right)} f(x - y) \dd y .\] Suppose this: \begin{center} \includegraphics[width=0.6\linewidth]{images/d750730b20024d73.png} \end{center} LHS has to be constant. \[ \|f\|_{L^\infty(I')} \lesssim \int_{\left( -\half, \half \right)} f(x - y) \dd y .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/76a43d4734324961.png} \end{center} \[ \|f\|_{L^\infty(I')} \stackrel{(*)}{\lesssim} \int_{\left( -\half, \half \right)} f(x - y) \dd y \] \begin{fclemmastar}[Locally constant property] Assuming: - $f \in \mathcal{S}(\Rbb^n)$ - $\supp \ft f \subseteq B_1(0)$ Then: for any unit ball $B^1 \subseteq \Rbb^n$ and any $x \in B'$, \[ \|f\|_{L^\infty(B')} \lesssim_m \int_{\Rbb^n} |f|(x - y) \frac{1}{(1 + |y|^2)^m} \dd y .\] \end{fclemmastar} The proof of this fact is more important than the statement -- we will be using the strategy in future. \begin{proof}[Proof of locally constant property] Let $f \in \mathcal{S}(\Rbb^n)$, $\supp \ft f \subseteq B_1(0)$. Let $\varphi \in \ccinf(\Rbb^n)$ such that $\varphi \equiv 1$ on $B_1(0)$, $\supp \varphi \subseteq B_2(0)$. By Fourier inversion: \[ f = \invft{(\ft f)} = \invft{(\ft f \varphi)} = \invft{(\ft f)} * \invft \varphi = f * \invft \varphi .\] Let $x_0, x \in B^1$ (unit ball in $\Rbb^n$). \begin{align*} |f(x_0)| &= \left| \int f(x_0 - y) \invft{\varphi}(y) \dd y \right| \\ &\le \int |f|(x_0 - y)|\invft \varphi(y)| \dd y \\ &= \int |f|(x - y)|\invft \varphi|(y - (y - x_0)) \dd y \\ &\lesssim_m \int |f|(x - y) \frac{1}{(1 + |y - \ub{(x - x_0)}_{|x - x_0| < 1}|^2)^m} \dd y \\ &\lesssim_m \int |f|(x - y) \frac{1}{(1 + |y|^2)^m} \qedhere \end{align*} \end{proof} \subsubsection*{Returning to $R_{\mathcal{P}^{n - 1}}^*(q' \to p') \implies R_{\mathcal{P}^{n - 1}}^{*, \text{loc}}(q' \to p')$} \[ \int_{B_R} |f(x)|^{p'} \dd x \lesssim \int_{B_R} |f \varphi_{B_R}|^{p'} \dd x \] where $\varphi_{B_R} \in \mathcal{S}(\Rbb^n)$ satisfies $\varphi_{B_R} \sim 1$ on $B_R$, $\supp \ft{\varphi_{B_R}} \subseteq B_{R^{-1}}(0)$. \[ \ft{f\varphi_{B_R}} = \ub{\ft f}_{\text{$R^{-1}$ neighbourhood of $\mathcal{P}^{n - 1}$}} * \ub{\ft{\varphi_{B_R}}}_{\text{$R^{-1}$ ball}}(\xi) \] supported in $2R^{-1}$-neighbourhood of $\mathcal{P}^{n - 1}$. Repeat steps of proof: \begin{align*} \int_{B_R} |f(x)|^{p'} \dd x &\lesssim R^{-(p' - 1)} \int_{I_{R^{-1}}} \left( \int_{|\xi'| < 1} |h_{\xi_n}(\xi')|^{q'} \dd \xi' \right)^{\frac{p'}{q'}} \dd \xi_n \end{align*} \begin{center} \includegraphics[width=0.6\linewidth]{images/16471f52c1fc49fa.png} \end{center} \[ h(\xi_n) = \boxed{\ft f * \ft{\varphi_{B_R}}(\xi', |\xi'|^2 + \xi_n)} \]