%! TEX root = FR.tex % vim: tw=50 % 03/02/2025 10AM $\mathcal{R} = S^{n - 1} \subseteq R^n$. Consider the statement \[ \|\ft f\|_{L^q(S^{n - 1})} \lesssim \|f\|_{L^p(\Rbb^n)} .\] (recall that we called this $R_{S^{n - 1}}(p \to q)$). Fix $\varphi \in C_c^\infty(\Rbb^n)$, $\varphi \sim \chi_{B_1(0)}$. For computing $L^p$ norms, $|\ft\varphi| \sim \chi_{B_c(0)}$. Wave packet function with localised spatial and frequency behaviour. Last time: $f_R(x) = e^{ix \cdot v_R} \invft \varphi(R^{-1} x_1, \ldots, R^{-1} x_{n - 1}, R^{-2} x_n)$. Frequency: $|\ft{f_R}(\xi)|$ \begin{center} \includegraphics[width=0.6\linewidth]{images/397b1056c74c45bc.png} \end{center} $\int_{S^{n - 1}} |\ft{f_R}|^q \dd \sigma$ \[ \boxed{n + 1 - \frac{n - 1}{q} \le \frac{n + 1}{q}} \] Spatial: $|f_R(x)|$ \begin{center} \includegraphics[width=0.3\linewidth]{images/43990f389a444627.png} \end{center} $\int_{\Rbb^1} |f_R|^p$ Note: sphere near $\mathbf{n}$ looks like $(\xi^1, 1 - \half|\xi'|^2)$, $S^{n - 1} \cap \supp \ft{f_R} \sim \text{cap of radius $R^{-1}$}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/d8903ad031f44c7d.png} \end{center} \textbf{Naive attempt:} $g_R(x) = R^n \invft \varphi(Rx)$ Frequency: $|\ft{g_R}(\xi)|$ \begin{center} \includegraphics[width=0.6\linewidth]{images/8ca5c7e7fd984948.png} \end{center} $\int_{S^{n - 1}} |\ft{g_R}(\xi)|^q \dd \xi \sim 1$ Spatial: $|g_R(x)|$ \begin{center} \includegraphics[width=0.3\linewidth]{images/14d1b9a237b34bf4.png} \end{center} $\int |g_R|^p \sim R^{-n} \cdot R^{np}$. Deduce: $1 \lesssim R^{-\frac{n}{p} + n}$, so \[ \boxed{p \ge 1} \] (trivial). $|\ft{g_R}| \sim 1$ on $S^{n - 1}$ made $\|\ft{g_R}\|_{L^q(S^{n - 1})}$ easy to compute. Could we improve things? Could think about $R \sim 1$: then $\|\ft{g_R}\|_{L^q(S^{n - 1})} \sim 1$, $\|g_R\|_p \sim 1$. This is more efficient, but we can't take a limit. So not so useful. Build a function $H(x)$ which satisfies $|\ft H(\xi)| \sim 1$ on $S^{n - 1}$. Let $\{\theta\}$ be a maximal collection of $\sim R^{-1}$-spaced points on $S^{n - 1}$ ($\#\{\theta\} \sim R^{n - 1}$). \begin{center} \includegraphics[width=0.4\linewidth]{images/0d483d4581ec4568.png} \end{center} For each $\theta$, let $A_\theta^{-1} : \Rbb^n \to \Rbb^n$ be an affine map which sends \[ B_1(0) \to R^{-1} \times \cdots \times R^{-1} \times R^{-2} \text{ ellipsoid centered at $\theta$, tangent to $S^{n - 1}$ at $\theta$} .\] Define $\varphi_\theta = \varphi \circ A_\theta$, $H(x) = \sum_\theta \invft{\varphi_\theta}(x)$. $\ft H(\xi) = \sum_\theta \varphi_\theta(\xi) \sim 1$ on $S^{n - 1}$ (actually on $R^{-2}$-neighbourhood of $S^{n - 1}$). $\int_{S^{n - 1}} |\ft H(\xi)|^q \dd \sigma \sim 1$. $H(x) = \sum_\theta \invft{\varphi_\theta}(x)$. $|\varphi_\theta(x)|$ Frequency: \begin{center} \includegraphics[width=0.3\linewidth]{images/15fd103e8226456c.png} \end{center} $|\invft{\varphi_\theta}(x)|$ Spatial: \begin{center} \includegraphics[width=0.4\linewidth]{images/159800844fa043be.png} \end{center} $\ess \supp H \supseteq \bigcup_\theta \ess \supp \invft{\varphi_\theta}$. \begin{center} \includegraphics[width=0.4\linewidth]{images/d26ca6b026fc4f52.png} \end{center} ``bush of tubes'' $\sim R^{n - 1}$ many $R \times \cdots \times R \times R^{2}$ tubes in $R^{-1}$-separated directions \[ \int_{\Rbb^n} |H(x)|^p \dd x = \int_{\Rbb^n} \left| \sum_\theta \ub{\invft{\varphi_\theta}(x)}_{\text{$\Cbb$-valued function}} \right|^p \dd x \] \begin{center} \includegraphics[width=0.4\linewidth]{images/ec10754f46754878.png} \end{center} Compute \begin{align*} \int_{\Rbb^n} \left| \sum_\theta \chi_{T_\theta}(x)^2 \right|^{\frac{p}{2}} &= \int_{\Rbb^n} \left| \sum_\theta \chi_{T_\theta}(x) \right|^{\frac{p}{2}} \\ &= \ub{\int_{B_R} \left| \sum \chi_{T_\theta} \right|^{\frac{p}{2}}}_{(R^{n - 1})^{\frac{p}{2}} \cdot R^n} + \ub{\int_{R_{R^2} \setminus B_R} \left| \sum \chi_{T_\theta} \right|^{\frac{p}{2}}}_{(*)} \end{align*} Consider overlap of $T_\theta$ on $\lambda S^{n - 1}$ ($\lambda \in (R, R^{2})$). Average overlap on $\lambda S^{n - 1}$: \[ \average_{\lambda S^{n - 1}} \sum_\theta \chi_{T_\theta} \sim \lambda^{-(n - 1)} \sum_\theta \int_{\lambda S^{n - 1}} \chi_{T_\theta} \sim \lambda^{-(n - 1)} \sum_\theta R^{n - 1} = \lambda^{-(n - 1)} R^{2(n - 1)} .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/0f5b7a257bb94284.png} \end{center} Not too hard to check that the number of active $T_\theta$ on $\lambda S^{n - 1}$ is $\sim \lambda^{-(n - 1)} R^{2(n - 1)}$. Now calculate: \[ (*) \sim \sum_{R < \lambda < R^2} \int_{\lambda < |x| < 2\lambda} \ub{\left| \sum_\theta \chi_{T_\theta} \right|^{\frac{p}{2}}}_{[\lambda^{-(n - 1)} R^{2(n - 1)}]^{\frac{p}{2}} \lambda^n} \dd x .\] \[ 1 \lesssim R^{-(n + 1) p} [R^{2n} + R^{(n - 1) \frac{p}{2}} R^n] .\] Two cases: either $R^{2n}$ dominates or the other term dominates. So $\boxed{p \le \frac{2n}{n + 1}}$.