%! TEX root = FR.tex % vim: tw=50 % 31/01/2025 10AM \newpage \section{Introduction to Fourier Restriction} \begin{fcthmstar}[Hausdorff-Young inequality] \label{thm:hy.ineq} Assuming: - $1 \le p \le 2$ - $\frac{1}{p} + \frac{1}{q} = 1$ Then: \[ \|\ft f\|_q \le \|f\|_p .\] \end{fcthmstar} \begin{proof} The inequality is true for $p = 1$, $q = \infty$ and for $p = 2$, $q = 2$ the inequality is true since we have equality (Plancherel). For values in between we can interpolate. \end{proof} Are there any other $(p, q)$ for which \[ \|\ft f\|_q \lesssim \|f\|_p ? \tag{$*$} \label{fbounded} \] We saw that $1 \le p \le 2$ was necessary (translations / modulations, \nameref{thm:khinchin}). \textbf{Scaling:} Plug in $f_\lambda(x) = f(\lambda x)$ which is $L^\infty$-normalised ($\|f_\lambda\|_\infty = \|f\|_\infty$). Then $\ft{f_\lambda}(\xi) = \lambda^{-n} \ft f(\lambda^{-1} \xi)$ which is $L^1$-normalised ($\|\ft{f_\lambda}\|_1 = \|\ft f\|_1$). \[ (\text{LHS of \eqref{fbounded}})^q = \int_{\Rbb^n} |\ft{f_\lambda}(\xi)|^q \dd \xi = \lambda^{-nq + n} \int |\ft f(\xi)|^q \dd \xi .\] \[ (\text{RHS of \eqref{fbounded}})^p = \int_{\Rbb^n} |f_\lambda(x)|^p \dd x = \lambda^{-n} \int |f(x)|^p \dd x .\] So we need for all $\lambda > 0$: \[ \lambda^{-n + \frac{n}{q}} \|\ft f\|_q \lesssim \lambda^{-\frac{n}{p}} \|f\|_p .\] So we need $-n + \frac{n}{q} = -\frac{n}{p}$, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. \subsubsection*{Classical questions} What is $C_{p, q}$ the smallest constant such that $\|\ft f\|_q \le C_{p, q} \|f\|_p$? Which functions $f$ satisfy $\frac{\|\ft f\|_q}{\|f\|_p} = C_{p, q}$? 2014: \[ \|\ft f\|_q \le C_{p, q} \|f\|_p - \dist_p(f, \text{maximisers (Gaussian)}) .\] Fourier restriction asks which $(p, q)$ permit estimates $\|\ft f\|_{L^q(\mathcal{R})} \lesssim \|f\|_{L^p(\Rbb^n)}$ ($\mathcal{R}$ is the restricted frequency set, $\mathcal{R} \subseteq \Rbb^n$). \begin{example*} $\mathcal{R} = B_1(0) \subseteq \Rbb^n$, unit ball $\to$: Basically, sitll governed by \nameref{thm:hy.ineq}. \end{example*} \begin{example*} $\mathcal{R} = B_1(0) \cap \{x_n = 0\}$ (measure $0$ subset of $\Rbb^n$). \end{example*} $R_{\mathcal{R}}(p \to q)$ means \[ \|\ft f\|_{L^q(\mathcal{R})} \lesssim \|f\|_{L^p(\Rbb^n)} \qquad \forall f : \Rbb^n \to \Cbb \text{ Schwartz} \] Always: $R_{\mathcal{R}}(1 \to \infty)$ true for all $\mathcal{R}$. In the second example, only this trivial statement is true (i.e. $R_{\mathcal{R}}(p \to q)$ is false for all other values for $p, q$). Let $\mathcal{R} = S^{n - 1}$ be the unit sphere in $\Rbb^n$. Consider \[ \|\ft f\|_{L^q(S^{n - 1})} \lesssim \|f\|_{L^p(\Rbb^n)} \] where $L^q(S^{n - 1})$ uses the usual surface measure $\dd \sigma$ on $S^{n - 1}$. \begin{notation*} \glssymboldefn{invft}% \[ \begin{tikzcd} \ub{f(x)}_{\in \mathcal{S}(\Rbb^n)} \ar[r, "\widehat{}"] & \ub{\ft f(x)}_{\in \mathcal{S}(\Rbb^n)} \ar[r, "\widehat{}"] \ar[rr, bend right=40, swap, "\widecheck{}"] & \ub{f(x)}_{\in \mathcal{S}(\Rbb^n)} \ar[r, "x \mapsto -x"] & \ub{f(x)}_{\in \mathcal{S}(\Rbb^n)} \end{tikzcd} \] We may call $\widecheck{}$ the ``inverse Fourier transform''. \end{notation*} Let $\varphi \in C_c^\infty(\Rbb^n)$, $\Rbb$-valued, $\ge \half$ on $B_1(0)$, with support in $B_2(0)$. May also assume $\invft{\varphi}$ is $\Rbb$-valued, $\invft{\varphi} \gtrsim 1$ on $B_c(0)$. $\invft \varphi$ bounded, $|\invft \varphi(x)| \lesssim_m (|x|^2 + 1)^{-m} \forall m$. $|\invft\varphi(x)|$ behaves like $\chi_{B_1(0)}$ in $L^p$. \begin{center} \includegraphics[width=0.6\linewidth]{images/8c177f87cf394742.png} \end{center} Consider dilates $f_R(x) = \invft \varphi(R^{-1} x) e^{2 \pi i x \cdot v_r}$, $R \gg 1$. Frequency side $|\ft{f_R}(\xi)| \sim R^n \chi_{B_{R^{-1}}(0)}(x)$ ($L^1$-norm). \begin{center} \includegraphics[width=0.6\linewidth]{images/983a0a4ff91e41de.png} \end{center} \[ \int_{S^{n - 1}} |\ft{f_R}(\xi)|^q \dd \sigma(\xi) \sim \ub{R^{nq} R^{-(n - 1)}}_{\to \sigma(B_{R^{-1}}(n) \cap S^{n - 1})} .\] $B_{R^{-1}}(n) \cap S^{n - 1}$ cap of radius $R^{-1}$. Spacial side $|f_R(x)| \sim \chi_{B_R(0)}(x)$ (in $L^\infty$-norm). \begin{center} \includegraphics[width=0.6\linewidth]{images/2fd133ce333d4dc5.png} \end{center} height $1$, $\int_{\Rbb^n} |f_R(x)|^p \dd x \sim R^n$. $R^{n - \frac{n-1}{q}} \lesssim R^{\frac{n}{p}}$, $n - \frac{n - 1}{q} \le \frac{n}{p}$. Consider: $g_{\mathcal{R}}(x) = e^{ix \cdot w_r} \invft \varphi (R^{-1} x_1, \ldots, R^{-1} x_{n - 1}, R^{-2} x_n)$. \newcommand\cyl{\mathrm{cylinder}} Frequency: $|\ft{g_r}(\xi)| \approx |\cyl|^{-1} \chi_\cyl(\xi)$. $|\cyl|^{-1}|$ $\to$ $(R{-1} \cdot R^{-1} R^{-2})^{-1} = R^{n + 1}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/8ffe2bc22bca4624.png} \end{center} \[ \int_{S^{n - 1}} |\ft{g_R}(\xi)|^q \dd \sigma(\xi) \sim R^{(n + 1)q} \sigma(\text{cap of radius $R^{-1}$}) = R^{(n + 1) q - (n - 1)} .\] Spatial side: $|g_{R'}(x)| \approx \chi_\cyl(x)$ ($L^\infty$-norm). \begin{center} \includegraphics[width=0.2\linewidth]{images/02e1229d9a804096.png} \end{center} $\int |g_R(x)|^p = R^{n - 1 + 2} = R^{n + 1}$. $\to$ $R^{n + 1 - \frac{n - 1}{q}} \lesssim R^{\frac{n + 1}{q}}$, $\implies n + 1 - \frac{n - 1}{q} \le \frac{n + 1}{p}$. Implies B. On Monday, we will build examples $h$ such that $\ft h$ sees \emph{all} of $S^{n - 1}$.