%! TEX root = FR.tex % vim: tw=50 % 29/01/2025 10AM \newpage \section{Introduction to Fourier Transform} Correction for lecture 2: Number Theory Lemma. True statements: \[ \frac{1}{N} \sum_{1 \le n \le N} \# \div(n) \lesssim \log N ,\] and $\# \div(n) \lesssim_\eps n^\eps$. See Terence Tao notes online. Explaining $\# \div(n) \lesssim_\eps n^\eps$: $\forall \eps > 0$, $\exists c_\eps \in (0, \infty)$ such that $\#\div(n) \le C_\eps n^\eps$ for all $n \ge 1$. We will be using $\lessapprox$ to mean ``$\le$ but up to sub-polynomial in $n$''. \textbf{Question:} \[ \average_{[0, N^2]} \left| \sum_{n \sim N} b_n e(a_n x) \right|^p \dd x \lessapprox (1 + N^{\frac{p}{2} - 2}) \|b_n\|_2^2 .\] For example, $a_n = \frac{n^2}{N^2}$. Recall: $n \sim N$ means $N \le n \le 2N$. $\{a_n\} \subseteq [0, 10]$, $a_{n + 1} - a_n \sim \frac{1}{N}$, $(a_{n + 2} - a_{n + 1}) - (a_{n + 1} - a_n) \sim \frac{1}{N^2}$. Reasonable conjecture? Yes, reasonable. \nameref{thm:khinchin}: May select $b_n \in \{\pm 1\}$ so that \[ \average_{[0, N^2]} \left| \sum_n b_n e(a_n x) \right|^p \dd x \sim \average_{[0, N^2]} \left| \sum_n |b_n|^2 \right|^{\frac{p}{2}} \dd x .\] Constant integral: $b_n \equiv 1$. $(1, 1, 1, \ldots, 1)$. \[ \average_{[0, N^2]} \left| \sum_n e(a_n x) \right|^p \dd x \gtrsim \frac{1}{N^2} \int_{[0, c]} N^p \dd x \sim N^{p - 2} = N^{\frac{p}{2} - 2} \|b_n\|_2^p .\] \begin{warning*} Enemy scenario: $\{a_n\} = \left\{\sqrt{\frac{n}{N}}\right\}_{n = N}^{2N}$ (technically $\left\{-\sqrt{\frac{3N - n}{N}}\right\}$ if we want to satisfy the conditions mentioned above). $(b_n) = (1, 0, \ldots, 0, 1, 0, \ldots, 0, 1, \ldots, 0)$. Length $N$ vector with $N^{\half}$ many $1$s. Have: \[ \average_{[0, N^2]} \left| \sum_{N \le m^2 \le 2N} e \left( \sqrt{\frac{m^2}{N}} x \right) \right|^p \dd x = \average_{[0, N^2]} \left| \sum_{m^2 \sim N} e \left( \frac{m}{\sqrt{N}} x \right) \right|^p \dd x \] \begin{center} \includegraphics[width=0.6\linewidth]{images/2d279d2f53204ef2.png} \end{center} We can calculate that the above expression is in fact $\ge N^{\frac{p}{2} - \half}$ (which breaks the conjecture until $p > 6$). \end{warning*} It turns out that this is (roughly speaking) the only problem. Why do we care? $b_n \equiv 1$, $p = 4$. Then \[ \average_{[0, N^2]} \left| \sum_n e(a_n x) \right|^4 \dd x \lessapprox N^2 = |\{a_n\}|^2 .\] \[ \implies \#\{a_{n_1} + a_{n_2} = a_{n_3} + a_{n_4}\} \lesssim |\{a_n\}|^2 .\] $\to$ Convex sequences have minimal additive energy. Decoupling doesn't know how to take advantage of $b_n \equiv 1$. \subsection{Fourier Transform on $\Rbb^n$} $f : \Rbb^n \to \Cbb$, $f \in \mathcal{S}(\Rbb^n)$ Schwartz function: $\|x^\alpha \partial^\beta f\|_\infty < \infty$ for all $\alpha, \beta$. \[ \hat{f}(\xi) = \int_{\Rbb^n} e^{-2\pi i x \cdot \xi} f(x) \dd x .\] $x$ is the spatial variable, and $\xi$ is the frequency variable. \textbf{Facts:} \begin{itemize} \item If $f \in \mathcal{S}$, then $\hat{f} \in \mathcal{S}$. \item Plancherel's Theorem: $\int f(x) \ol{g(x)} \dd x = \int \hat{f}(\xi) \ol{\hat{g}(\xi)} \dd \xi$. \item $f(x) = e^{-\pi x^2}$, $\hat{f}(\xi) = e^{-\pi \xi^2}$ \item $\lambda > 1$ \begin{center} \includegraphics[width=0.6\linewidth]{images/610f9662fddc4068.png} \end{center} On the left: mass of $f$ is smashed by a factor of $\lambda$. On the right: the mass of $\hat{f}$ is stretched by a factor of $\lambda$, ``$L^1$ normalized''. $\|\hat{f_\lambda}\|_1$ is independent of $\lambda$. There is a general formula for $\widehat{f \circ A}$ where $A$ is an affine transformation. \item $\ft{cf + g} = c \ft{f} + \ft{g}$. \item Translations are dual to modulations: \begin{align*} f_\tau(x) &= f(x - \tau) \\ \ft{f_\tau}(\xi) &= e^{-2\pi i \xi \cdot \tau} \ft{f}(\xi) \\ f^tau(x) &= e^{2\pi i \tau \cdot x} f(x) \\ \ft{f^\tau}(\xi) &= \ft{f}(\xi - \tau) \end{align*} \end{itemize} Basic question about $\ft{f}$: $L^p$ to $L^q$ boundedness? Plancherel's: \[ \|\ft{f}\|_2^2 = \int \ft{f} \ol{\ft{f}} = \int f \ol{f} = \|f\|_2^2 \] (isometry on $L^2$). $p = 1$, $q = \infty$: \[ \left| \int e^{-2\pi i x \cdot \xi} f(x) \dd x \right| \le \int |f(x)| \dd x = \|f\|_1 \] (contraction from $L^1$ to $L^\infty$). By interpolation (Marcinkiewicz): $\|\ft{f}\|_q \le \|f\|_p$ for $1 \le p \le 2$, $\frac{1}{p} + \frac{1}{q} = 1$ (Hausdorff-Young inequality). Are there any other $(p, q)$ for which \[ \|\ft{f}\|_q \lesssim_{p, q} \|f\|_q ?\] Attempt 1: Let $\varphi \in C_c^\infty(\Rbb^n)$ (compactly supported smooth function on $\Rbb^n$), with $\supp \varphi \subseteq B_1(0)$. Consider $f(x) = \sum_{k = 1}^N \eps_k \varphi(x - v_k)$. Choose $v_k$ so that $\{B_1(v_k)\}$ are not overlapping. Then \[ \|f\|_p^p = \int \left| \sum_k \eps_k \varphi(x - v_k) \right|^p = \sum_k \int |\varphi(x - v_k)|^p \dd x = N \|\varphi\|_p^p .\] Also \[ \ft{f}(\xi) = \sum_{k = 1}^N \eps_k e^{-2 \pi i \xi v_k} \ft{\varphi}(\xi) = \left( \sum_{k = 1}^N \eps_k e^{-2 \pi i \xi v_k} \right) \ft{\varphi}(\xi) .\] We will use \nameref{thm:khinchin}. $\|\ft{f}\|_q \sim N^{\half} \|\ft{\varphi}\|_q$.