%! TEX root = FR.tex % vim: tw=50 % 27/01/2025 10AM \newpage \section{Exponential sums in $L^p$} Recall: studying $f(x) = \sum_{\xi \in \mathcal{R}} e(\xi \cdot x)$. When $\mathcal{R}$ does not have (linear) structure, expect $|f(x)| \sim |\mathcal{R}|^{\half}$ (``sqrt cancellation'') in an appropriate sense (in $L^p$), \emph{more} than when $\mathcal{R}$ is structured. Linear $\mathcal{R}$ $f(x) = \sum_{n = 1}^N e(nx)$ vs convex $\mathcal{R}$ $g(x) = \sum_{n = 1}^{N} e(n^2 x)$. Have \[ \int_{[0, 1]} |f(x)|^2 \dd x = N = \int_{[0, 1]} |g(x)|^2 \dd x .\] Have $|f(x)| \sim N$ on $[0, cN^{-1}]$, and $|g(x)| \sim N$ on $[0, cN^{-2}]$. \begin{center} \includegraphics[width=0.6\linewidth]{images/e8c277e0ed1c415d.png} \end{center} $L^2$ does not distinguish $f, g$. $L^\infty$ does not distinguish. However, $2 < p < \infty$ does. What about $1 \le p \le 2$? We don't usually study this range because the estimates tend to be trivial / not interesting. Focus on $2 < p < \infty$. Preduct size of \[ \int_{[0, 1]} |f|^p .\] Square root cancellation lower bound: \[ N = \int_{[0, 1]} |f|^2 \stackrel{\text{H\"older's}}{\le} \left( \int_{[0, 1]} |f|^{2 \cdot \frac{p}{2}} \right)^{\frac{2}{p}} (1)^{\square} \] $\implies N^{p / 2} \le \int_{[0, 1]} |f|^p$. Constant integral lower bound: \begin{align*} \int_{[0, 1]} |f|^p &\ge \int_{[0, cN^{-1}]} |f|^p \gtrsim N^p N^{-1} \\ \int_{[0, 1]} |g|^p &\ge \int_{[0, cN^{-2}]} |g|^p \gtrsim N^p N^{-2} \end{align*} $\int |f|^p \lesssim N^{p / 2} + N^{p - 1}$, $\int |g|^p \lesssim N^{p / 2} + N^{p - 2}$. Note that for the $f$ bound, $N^{p - 1}$ is bigger than $N^{p - 1}$ (as long as $p > 2$), so the constant integral dominates! For $g$, if $2 \le p \le 4$, the square root cancellation dominates, but for $p > 4$ the constant integral takes over. \begin{fcthm} Assuming: - $p > 2$ - $b_n \in \Cbb$ Then: \[ \int \left| \sum_n b_n e(nx) \right|^p \le N^{\frac{p}{2} - 1} \|b_n\|_2^p .\] \end{fcthm} \begin{proof} Consider: $\sum_{n = 1}^N b_n e(nx)$, $b_n \in \Cbb$. \begin{align*} \int_{[0, 1]} \left| \sum_n b_n e(nx) \right|^p \dd x &\le \left\| \sum_n b_n e(nx) \right\|_\infty^{p - 2} \int_{[0, 1]} \left| \sum_n b_n e(nx) \right|^2 \dd x \\ &\le (N^{\half} \|b_n\|_2)^{p - 2} \|b_n\|_2^2 &&\text{CS} \\ &= N^{\frac{p}{2} - 1} \|b_n\|_2^p \qedhere \end{align*} \end{proof} Note that this is sharp when $b_n \equiv 1$. $\sum_{n = 1}^{N} b_n e(n^2 x)$. Focus on $p = 4$. \[ \int_{[0, 1]} \left| \sum_n b_n e(n^2 x) \right|^4 \dd x = \sum_{n_1} \sum_{n_2} \sum_{n_3} \sum_{n_4} b_{n_1} b_{n_2} \ol{b_{n_3}} \ol{b_{n_4}} \int_{[0, 1]} e((n_1^2 + n_2^2 - n_3^2 - n_4^2) x) \dd x .\] The integral vanishes unless $n_1^2 - n_3^2 = n_4^2 - n_2^2$. Number Theory lemma: If $m \in \Zbb$, then \[ \text{\# divisors of $m$} \lesssim \log m .\] Follows from unique prime factorisation. \begin{warning*} The above lemma is false. See correction later. \end{warning*} For fixed $n_1, n_3$, \[ \#\ub{\{(n_2, n_4) : n_1^2 - n_3^2 = (n_4 + n_2)(n_4 - n_2)\}}_{\eqdef \mathcal{S}_{n_1, n_3}} \lesssim \log N .\] Hence \begin{align*} \int_{[0, 1]} \left| \sum_n b_n e(n^2 x) \right|^4 \dd x &\le \sum_{n_1} \sum_{n_3} |b_{n_1} b_{n_3}| \left| \sum_{(n_2, n_4) \in \mathcal{S}_{n_1, n_3}} b_{n_2} \ol{b_{n_4}} \right| \\ &\lesssim (\log N) \|b_n\|_2^4 \end{align*} We will now use $\lessapprox$ to mean $\lesssim$ up to powers of $\log N$. $2 < p < 4$: $\frac{1}{p} = \frac{\theta}{2} + \frac{1 - \theta}{4}$, $\theta \in [0, 1]$, $h = \sum_n b_n e(n^2 x)$, $\|h\|_p \le \|h\|_2^\theta \|h\|_4^{1 - \theta} \lessapprox \|b_n\|_2^\theta \|b_n\|_2^{1 - \theta} \approx \|b_n\|_2$. $p \ge 4$: \[ \int_{[0, 1]} |h|^p \lessapprox \|h\|_\infty^{p - 4} \|b_n\|_2^4 \stackrel{CS}{\le} (N^{\half} \|b_n\|_2)^{p - 4} \|b_n\|_2^4 \approx N^{\frac{p}{2} - 2} \|b_n\|_2^p .\] \begin{fcthm} Assuming: - $2 > p$ Then: \[ \int \left| \sum_n b_n e(n^2 x) \right|^p \dd x \lessapprox (1 = N^{\frac{p}{2} - 2}) \|b_n\|_2^p .\] \end{fcthm} \noproof Sharp by $b_n \equiv 1$. Positive take away: estimates are sharp, proofs are elementary. Easy to think of sharp examples. Number Theory counting idea shows: \begin{align*} \int_{[0, 1]^2} |u(x, t)|^6 \dd x \dd t &\lessapprox \|b_n\|_2^6 & u(x, t) &= \sum_{\substack{|n| \sim N \\ n \in \Zbb}} b_n e(nx + n^2 t) \\ \int_{[0, 1]^3} |u(x, t)|^4 \dd x \dd t \lessapprox \|b_n\|_2^4 & u(x, t) &= \sum_{\substack{|n| \sim N \\ n \in \Zbb^2}} b_n e(n \cdot x + |n|^2 t) \end{align*} Sharp, $6, 4 = p_{\text{crit}}$. Strichartz estimate for periodic Schr\"odinger equation, observed by Bourgain in 1990s. Negatives: on $\Tbb^3$ $\to$ $p_{\text{crit}} = \frac{10}{3}$, but this technique can only work on even integer values of $p$. $\Tbb^1$, $\Tbb^2$ only sharp Strichartz estimates per Schr\"odinger until 2015! 2015: Bourgain-Demeter proved $(l^2, L^p)$ sharp decoupling estimate. Gives sharp Strichartz estimate for Schr\"odinger in $\Tbb^d$ for all $d$. Proved earlier: \[ N^{-2} \int_{[0, N^2]} \left| \sum_{n \sim N} e \left( \frac{n^2}{N^2} x \right) \right|^p \dd x \le (1 + N^{\frac{p}{2} - 2}) \|b_n\|_2^p .\] (where $n \sim N$ means $N \le n \le 2N$). Conjecture: \[ \average_{[0, N^2]} \left| \sum_{n \in N} b_n e(a_n x) \right|^p \dd x \lesssim (1 + N^{\frac{p}{2} - 2}) \|b_n\|_2^p \] $a_n \in [0, 1]$, $a_{n + 1} - a_n \sim \frac{1}{N}$, $a_{n + 2} - a_{n + 1} - (a_{n + 1} - a_n) \sim \frac{1}{N^2}$. Example: $\{a_n\} \sim \left\{ \frac{n^3}{N^3} \right\}_{n = N}^{2N}$.