Fourier Restriction Theory
Daniel Naylor

Contents

1What is Fourier Restriction Theory?
2Exponential sums in Lp
3Introduction to Fourier Transform
3.1Fourier Transform on n
4Introduction to Fourier Restriction
5Equivalent Versions of Fourier Restriction
6Tube incidence implications of Fourier restriction
Index

1 What is Fourier Restriction Theory?

Main object: f : d , f(x) = ξbξe2πixξ, bξ .

Notation. We will write e(x ξ)ie2πixξ.

x d is a spatial variable, and ξ d is the frequency variable.

The frequencies (or Fourier transform) of f is restricted to a set R (where R we will always be finite – so no need to worry about convergence issues).

Goal: Understand the behaviour of f in terms of properties of R.

Example.

Both avoid linear structure.

{logn} is a concave set (getting closer and closer together).

{(n,n2)} lie on a parabola.

Guiding principle: if properties of an object avoid (linear) structure, then we expect some random or average behaviour.

The above examples avoid linear structure using some notion fo curvature. See Bourgain Λ(p) paper: extra behaviour.

Square root cancellation: If we add ± 1 randomly N times, then we expect a quantity with size N1 2 .

Theorem 1.1 (Khinchin’s inequality). Assuming that:

  • {𝜀n}n=1N be IID random variables with (𝜀n = 1) = (𝜀n = 1) = 1 2

  • 1 < p <

  • x1,,xN

Then
(  ||N∑      ||p) 1p    (∑N     ) 12
  𝔼||   𝜀nxn||    ∼p     |xn|2   = ∥xn∥2.
   |n=1    |        n=1

Notation. p means but the constant may depend on p.

Proof. Without loss of generality, x1,,xn . Without loss of generality, x2 = 1.

p = 2: want to show 𝔼 (| n𝜀nxn| 2) 1.

 (        --------)
𝔼  ∑  𝜀nxn∑  𝜀mxm   = ∑  𝔼(𝜀n𝜀mxnxm-) = ∑ |xn|2 + ∑  ∑  xnxm--𝔼𝜀n𝔼𝜀m.
    n      m          n,m                n         n m=n     ◟◝=◜0◞
What about general exponents p?
 ( ||      ||p)   ∫ ∞  ( ||       ||p    )
𝔼  ||∑  𝜀nxn||   =     ℙ  ||∑   𝜀nxn || > α  dα.
   |n     |      0     |n      |
The equality here is the Layer cake formula, which is true for any p (0,).

Let λ > 0. Study the random variable eλ n𝜀nxn (0,).

                (         )
  (  ∑     )      ∏           ∏           ∏  (1       1     )
𝔼  eλ n 𝜀nxn  = 𝔼     eλ𝜀nxn  =    𝔼eλ𝜀nxn =     2eλxn + 2e−λxn  .
                   n           n           n
Fact: 1 2ez + 1 2ez ez2 2 (to check, use the Taylor series). So we can get

α(eλ n𝜀nxn > α) 𝔼(eλ n𝜀nxn ) (Chebyshev’s inequality) neλ2|x n|22 = eλ22

By symmetry,

αℙ(e||λ ∑n𝜀nxn|| > α) ≲ eλ2∕2.
Choose α = eλ2 :
  (|       |   )     (|       |p    )
   ||∑      ||          ||∑      ||    p     −λ2∕2
ℙ  ||   𝜀nxn|| > λ = ℙ  ||   𝜀nxn|| > λ   ≲ e    .
     n                  n
Use in Layer cake:
 ( ||       ||p)   ∫ ∞
𝔼  ||∑  𝜀 x ||  ≲     e−α2∕p∕2dα ∼  1.
   | n  n n|     0             p
Lower bound: use Hölder’s inequality. X = n𝜀nxn.
    --        p 1∕p     q1∕q
𝔼◟(X◝◜X)◞ ≤ (𝔼◟-(|X◝|◜))-◞(𝔼|X | )  .
  =1        ≲p1
1 p + 1 q = 1.

Can you find a more intuitive proof? E-mail Dominique Maldague.

Corollary. 𝔼 ( | n=1N𝜀nfn(x)|pdx) p | n=1N|fn(x)|2| p2dx.

Useful for exercises!

Return to Fourier restriction context.

f(x) = n=1Ne(nx) R = {1,,N} g(x) = n=1Ne(n2x) R = {12,22,,N2}

Both f,g are 1-periodic. So study them on 𝕋 = [0,1]. f(0) = N, |f(x)| N for [0,c 1 N ]. g(0)iN, |g(x)| N for x [0,c 1 N2 ].

∫             ∑  ∫
    |f(x)|2dx =        e((n− mx )dx = N).
 [0,1]          n,m [0,1]
∫           ∑  ∫
    |g(x )|2 =        e((n2 − m2 )x)dx = N.
 [0,1]        n,m [0,1]

PIC

∫
    |f(x)|pdx ≥ N p∕2 + N p−1
 [0,1]
∫
    |f(x)|pdx ≥ N p∕2+ N p−2.
 [0,1]
For the first one, Np1 (organised behaviour) dominates as soon as p > 2, and for the second one, Np2 dominates for 2 p 4 (“square root cancellation behaviour lasts for longer”).

2 Exponential sums in Lp

Recall: studying f(x) = ξRe(ξ x). When R does not have (linear) structure, expect |f(x)||R|1 2 (“sqrt cancellation”) in an appropriate sense (in Lp), more than when R is structured.

Linear R f(x) = n=1Ne(nx) vs convex R g(x) = n=1Ne(n2x).

Have

∫                  ∫
     |f(x)|2dx = N =      |g(x)|2dx.
 [0,1]               [0,1]
Have |f(x)| N on [0,cN1], and |g(x)| N on [0,cN2].

PIC

L2 does not distinguish f,g. L does not distinguish. However, 2 < p < does.

What about 1 p 2? We don’t usually study this range because the estimates tend to be trivial / not interesting.

Focus on 2 < p < . Preduct size of

∫      p
    |f|.
 [0,1]

Square root cancellation lower bound:

     ∫            ( ∫        ) 2p
           2 H ölder’s       2⋅p2     □
N  =  [0,1]|f |  ≤      [0,1]|f|     (1)
Np2 [0,1]|f|p.

Constant integral lower bound:

[0,1]|f|p [0,cN1]|f|p NpN1 [0,1]|g|p [0,cN2]|g|p NpN2

|f|p Np2 + Np1, |g|p Np2 + Np2.

Note that for the f bound, Np1 is bigger than Np1 (as long as p > 2), so the constant integral dominates!

For g, if 2 p 4, the square root cancellation dominates, but for p > 4 the constant integral takes over.

Assuming:

Theorem 2.1. - p > 2 - bn Then:

∫ ||         ||p
  ||∑  bne(nx)|| ≤ N p2−1∥bn∥p.
  | n       |            2

Proof. Consider: n=1Nbne(nx), bn .

[0,1] | nbne(nx)|pdx nbne(nx)p2[0,1] | nbne(nx)|2dx (N1 2 bn2)p2bn22 CS = N p 2 1bn2p

Note that this is sharp when bn 1.

n=1Nbne(n2x). Focus on p = 4.

    |          |4
∫   ||∑       2 ||      ∑  ∑  ∑  ∑       ------∫       2   2   2    2
 [0,1]||   bne(n x)|| dx =             bn1bn2bn3bn4 [0,1]e((n1 + n2 − n3 − n4)x)dx.
      n                n1  n2 n3 n4
The integral vanishes unless n12 n32 = n42 n22.

Number Theory lemma: If m , then

# divisors of m ≲ logm.
Follows from unique prime factorisation.

Warning. The above lemma is false.

See correction later.

For fixed n1,n3,

            2   2
# {◟(n2,n4) : n1 −-n3-=◝◜(n4 +-n2)(n4-−-n2)}◞≲ log N.
                =:𝒮n1,n3
Hence

[0,1] | nbne(n2x)|4dx n1 n3|bn1bn3|| (n2,n4)Sn 1,n3bn2 bn4 | (logN)bn24

We will now use to mean up to powers of logN.

2 < p < 4: 1 p = 𝜃 2 + 1𝜃 4 , 𝜃 [0,1], h = nbne(n2x), hp h2𝜃h41𝜃 bn2𝜃bn21𝜃 bn2.

p 4:

∫
      p      p− 4   4 CS   12     p−4    4    p2−2    p
 [0,1]|h| ≾ ∥h∥∞ ∥bn∥2 ≤ (N  ∥bn∥2)  ∥bn∥2 ≈ N   ∥bn∥2.

Assuming:

Theorem 2.2. - 2 > p Then:

∫ ||∑          ||p
  ||   bne(n2x)|| dx ≾ (1 = N p2− 2)∥bn∥p2.
  |n         |

Sharp by bn 1.

Positive take away: estimates are sharp, proofs are elementary. Easy to think of sharp examples.

Number Theory counting idea shows:

[0,1]2|u(x,t)|6dxdt bn26 u(x,t) = |n|N n bne(nx + n2t) [0,1]3|u(x,t)|4dxdt b n24 u(x,t) = |n|N n2 bne(n x + |n|2t)

Sharp, 6,4 = pcrit.

Strichartz estimate for periodic Schrödinger equation, observed by Bourgain in 1990s.

Negatives: on 𝕋3 pcrit = 10 3 , but this technique can only work on even integer values of p.

𝕋1, 𝕋2 only sharp Strichartz estimates per Schrödinger until 2015!

2015: Bourgain-Demeter proved (l2,Lp) sharp decoupling estimate. Gives sharp Strichartz estimate for Schrödinger in 𝕋d for all d.

Proved earlier:

          |           |
    ∫     ||∑    ( n2 )||p           p      p
N −2    2 ||   e  N-2x || dx ≤ (1+ N 2−2)∥bn ∥2.
     [0,N ] n∼N
(where n N means N n 2N).

Conjecture:

  ∫    |           |p
−      ||∑   b e(a x)|| dx ≲ (1 + N p2−2)∥b ∥p
   [0,N2]||n∈N  n  n  ||                 n 2

an [0,1], an+1 an 1 N, an+2 an+1 (an+1 an) 1 N2 .

Example: {an} {n3 N3 } n=N2N.

3 Introduction to Fourier Transform

Correction for lecture 2: Number Theory Lemma.

True statements:

 1  ∑
--      # ÷ (n) ≲ logN,
N 1≤n≤N
and # ÷ (n) 𝜀n𝜀.

See Terence Tao notes online.

Explaining # ÷ (n) 𝜀n𝜀: 𝜀 > 0, c𝜀 (0,) such that # ÷ (n) C𝜀n𝜀 for all n 1.

We will be using to mean “ but up to sub-polynomial in n”.

Question:

  ∫    ||           ||p
−      ||∑   bne(anx)|| dx ≾ (1 +N p2− 2)∥bn∥2.
   [0,N2]|n∼N        |                   2
For example, an = n2 N2 .

Recall: n N means N n 2N.

{an} [0,10], an+1 an 1 N, (an+2 an+1) (an+1 an) 1 N2 .

Reasonable conjecture?

Yes, reasonable.

Khinchin’s inequality: May select bn {±1} so that

 ∫     |          |p      ∫     |       |p2
       ||∑         ||             ||∑     2||
− [0,N2]||   bne(anx)|| dx ∼ − [0,N2]||   |bn| || dx.
         n                        n

Constant integral: bn 1. (1,1,1,,1).

  ∫     ||∑        ||p        ∫
−       ||   e(anx)|| dx ≳ -12    N pdx ∼ N p−2 = N p2− 2∥bn∥p2.
   [0,N2]|n       |      N   [0,c]

Warning. Enemy scenario: {an} = {n N } n=N2N (technically { 3Nn N } if we want to satisfy the conditions mentioned above).

(bn) = (1,0,,0,1,0,,0,1,,0). Length N vector with N1 2 many 1s. Have:

       |                  |
 ∫     ||  ∑      ( ∘ -2- )||p      ∫     || ∑    (     ) ||p
−      ||        e    m-x  || dx = −      ||     e √m--x  ||dx
  [0,N2]|N≤m2≤2N      N    |        [0,N2]|m2∼N     N    |

PIC

We can calculate that the above expression is in fact Np 2 1 2 (which breaks the conjecture until p > 6).

It turns out that this is (roughly speaking) the only problem.

Why do we care?

bn 1, p = 4. Then

       |        |
 ∫     ||∑       ||4       2       2
−     2||   e(anx )|| dx ≾ N  = |{an}| .
   [0,N ]  n
=⇒  #{a  + a   = a  + a  } ≲ |{a }|2.
       n1   n2    n3   n4      n
Convex sequences have minimal additive energy.

Decoupling doesn’t know how to take advantage of bn 1.

3.1 Fourier Transform on n

f : n , f S(n) Schwartz function: xαβf < for all α,β.

      ∫
ˆ         −2πix⋅ξ
f(ξ) = ℝn e     f(x)dx.
x is the spatial variable, and ξ is the frequency variable.

Facts:

Basic question about f^: Lp to Lq boundedness?

Plancherel’s:

      ∫   -- ∫   --
∥^f∥22 =  f^^f =   ff = ∥f∥22
(isometry on L2).

p = 1, q = :

||∫             ||  ∫
||  e−2πix⋅ξf (x)dx|| ≤   |f(x)|dx = ∥f∥1
(contraction from L1 to L).

By interpolation (Marcinkiewicz): f^q fp for 1 p 2, 1 p + 1 q = 1 (Hausdorff-Young inequality).

Are there any other (p,q) for which

∥f^∥q ≲p,q ∥f∥q?

Attempt 1: Let φ Cc(n) (compactly supported smooth function on n), with supp φ B1(0).

Consider f(x) = k=1N𝜀kφ(x vk).

Choose vk so that {B1(vk)} are not overlapping. Then

      ∫ ||∑            ||p  ∑  ∫
∥f∥pp =  ||   𝜀kφ(x− vk)|| =      |φ(x− vk)|pdx = N ∥φ∥pp.
        | k           |    k
Also
       N∑                ( ∑N          )
f^(ξ) =    𝜀ke− 2πiξvk^φ(ξ) =     𝜀ke−2πiξvk φ^(ξ).
       k=1                 k=1
We will use Khinchin’s inequality.

f^q N1 2 φ^q.

4 Introduction to Fourier Restriction

Theorem (Hausdorff-Young inequality). Assuming that:

  • 1 p 2

  • 1 p + 1 q = 1

Then
 ^
∥f∥q ≤ ∥f∥p.

Proof. The inequality is true for p = 1, q = and for p = 2, q = 2 the inequality is true since we have equality (Plancherel).

For values in between we can interpolate.

Are there any other (p,q) for which

∥f^∥q ≲ ∥f∥p?                                  (∗)

We saw that 1 p 2 was necessary (translations / modulations, Khinchin’s inequality).

Scaling: Plug in fλ(x) = f(λx) which is L-normalised (fλ = f). Then fλ^(ξ) = λnf^(λ1ξ) which is L1-normalised (fλ^1 = f^1).

              ∫                   ∫
(LHS  of (∗))q =   |^fλ(ξ)|qdξ = λ−nq+n  |^f(ξ)|qdξ.
               ℝn
              ∫                 ∫
          p            p     − n       p
(RHS  of (∗)) = ℝn |fλ(x)| dx = λ   |f(x)| dx.
So we need for all λ > 0:
 −n+nq ^     − np
λ     ∥f∥q ≲ λ  ∥f∥p.
So we need n + n q = n p, i.e. 1 p + 1 q = 1.

Classical questions

What is Cp,q the smallest constant such that f^q Cp,qfp?

Which functions f satisfy f^q f p = Cp,q?

2014:

 ^
∥f∥q ≤ Cp,q∥f ∥p − distp(f,maximisers (Gaussian)).
Fourier restriction asks which (p,q) permit estimates f^Lq(R) fLp(n) (R is the restricted frequency set, R n).

Example. R = B1(0) n, unit ball : Basically, sitll governed by Hausdorff-Young inequality.

Example. R = B1(0) {xn = 0} (measure 0 subset of n).

RR(p q) means

                           n
∥^f∥Lq(ℛ ) ≲ ∥f∥Lp(ℝn)   ∀f : ℝ → ℂ Schwartz
Always: RR(1 ) true for all R.

In the second example, only this trivial statement is true (i.e. RR(p q) is false for all other values for p,q).

Let R = Sn1 be the unit sphere in n. Consider

∥^f∥ q n−1 ≲ ∥f∥ p  n
   L (S   )     L (ℝ )
where Lq(Sn1) uses the usual surface measure dσ on Sn1.

Notation.

^^ˇx↦→− f◟x(◝x◜)◞       f◟^◝(x◜)◞        f◟(◝x◜)◞       f◟(◝x◜)◞
   ∈𝒮(ℝn)      ∈𝒮(ℝn)      ∈𝒮(ℝn)     ∈ 𝒮(ℝn)
We may call ˇ the “inverse Fourier transform”.

Let φ Cc(n), -valued, 1 2 on B1(0), with support in B2(0).

May also assume ˇφ is -valued, ˇφ 1 on Bc(0). ˇφ bounded, |ˇφ (x)|m(|x|2 + 1)mm. |ˇφ (x)| behaves like χB1(0) in Lp.

PIC

Consider dilates fR(x) = ˇφ (R1x)e2πixvr, R 1.

Frequency side |fR^(ξ)| RnχB R1(0)(x) (L1-norm).

PIC

∫
     |^f (ξ)|qdσ(ξ) ∼   RnqR −(n− 1)  .
 Sn−1  R             ◟---◝◜---◞n−1
                   →σ(BR−1(n)∩S   )
BR1(n) Sn1 cap of radius R1. Spacial side |fR(x)| χBR(0)(x) (in L-norm).

PIC

height 1, n|fR(x)|pdx Rn.

Rnn1 q Rn p , n n1 q n p.

Consider: gR(x) = eixwrˇφ (R1x1,,R1xn1,R2xn).

Frequency: |gr^(ξ)||cylinder|1χcylinder(ξ). |cylinder|1| (R1 R1R2)1 = Rn+1.

PIC

∫
     |^g (ξ)|qdσ(ξ) ∼ R (n+1)qσ (cap of radius R−1) = R(n+1)q−(n−1).
 Sn−1  R

Spatial side: |gR(x)| χcylinder(x) (L-norm).

PIC

|gR(x)|p = Rn1+2 = Rn+1.

Rn+1n1 q R n+1 q , n + 1 n1 q n+1 p . Implies B.

On Monday, we will build examples h such that h^ sees all of Sn1.

R = Sn1 Rn.

Consider the statement

∥^f∥Lq(Sn−1) ≲ ∥f∥Lp(ℝn).
(recall that we called this RSn1(p q)).

Fix φ Cc(n), φ χB1(0). For computing Lp norms, |φ^| χBc(0).

Wave packet function with localised spatial and frequency behaviour.

Last time: fR(x) = eixvRˇφ (R1x1,,R1xn1,R2xn).

Frequency: |fR^(ξ)|

PIC

Sn1|fR^|qdσ

|-------------------|
n + 1− n-−-1 ≤ n+-1-|
---------q-------q---

Spatial: |fR(x)|

PIC

1|fR|p

Note: sphere near n looks like (ξ1,1 1 2|ξ|2), Sn1 supp fR^ cap of radius R1.

PIC

Naive attempt: gR(x) = Rnˇφ (Rx)

Frequency: |gR^(ξ)|

PIC

Sn1|gR^(ξ)|qdξ 1

Spatial: |gR(x)|

PIC

|gR|p Rn Rnp.

Deduce: 1 Rn p +n, so

|-----|
-p ≥-1|
(trivial).

|gR^| 1 on Sn1 made gR^Lq(Sn1) easy to compute.

Could we improve things?

Could think about R 1: then gR^Lq(Sn1) 1, gRp 1. This is more efficient, but we can’t take a limit. So not so useful.

Build a function H(x) which satisfies |H^(ξ)| 1 on Sn1.

Let {𝜃} be a maximal collection of R1-spaced points on Sn1 (#{𝜃} Rn1).

PIC

For each 𝜃, let A𝜃1 : n n be an affine map which sends

B1(0) → R−1 × ⋅⋅⋅ × R−1 × R −2 ellipsoid centered at 𝜃, tangent to Sn− 1 at 𝜃.
Define φ𝜃 = φ A𝜃, H(x) = 𝜃ˇφ𝜃(x).

H^(ξ) = 𝜃φ𝜃(ξ) 1 on Sn1 (actually on R2-neighbourhood of Sn1).

Sn1|H^(ξ)|qdσ 1.

H(x) = 𝜃ˇφ𝜃(x).

|φ𝜃(x)| Frequency:

PIC

|ˇφ𝜃(x)| Spatial:

PIC

ess supp H 𝜃 ess supp ˇφ𝜃.

PIC

“bush of tubes”

Rn1 many R × × R × R2 tubes in R1-separated directions

∫              ∫  ||∑              ||p
    |H (x)|pdx =    ||      ˇφ 𝜃(x)    ||dx
  ℝn            ℝn|| 𝜃    ◟-◝◜ ◞   ||
                      ℂ- valued function

PIC

Compute

n | 𝜃χT𝜃(x)2| p 2 =n | 𝜃χT𝜃(x)| p 2 = ∫   |      |p
    ||∑  χ  ||2
 BR      T𝜃
◟-----◝◜----◞ (Rn1) p 2 Rn +

                                                    ∫       |      |p
                                                            ||∑   χT ||2
                                                     RR2∖BR       𝜃
                                                    ◟-------◝◜-------◞ ()

Consider overlap of T𝜃 on λSn1 (λ (R,R2)).

Average overlap on λSn1:

  ∫     ∑              ∑  ∫                  ∑
−          χT𝜃 ∼ λ −(n−1)        χT𝜃 ∼ λ−(n−1)   Rn−1 = λ−(n− 1)R2(n−1).
   λSn−1 𝜃              𝜃  λSn−1              𝜃

PIC

Not too hard to check that the number of active T𝜃 on λSn1 is λ(n1)R2(n1).

Now calculate:

       ∑    ∫          ||∑     ||p2
(∗) ∼                  ||   χT𝜃||    dx.
     R<λ<R2  λ<|x|<2λ   | 𝜃    |
                     −(◟n−1)-◝◜2(n−1◞)p n
                    [λ     R    ]2λ

     −(n+1)p  2n    (n− 1)p  n
1 ≲ R      [R   +R     2R  ].
Two cases: either R2n dominates or the other term dominates. So p 2n n + 1 .

5 Equivalent Versions of Fourier Restriction

Searching for (p,q) for which

∥^f∥Lq(Sn−1) ≤ Cp,q,n∥f∥Lp(ℝn).

  • (1)

    PIC

    R = [0,1]n1 ×{0}

    PIC

  • (2)

    PIC

    B R2 | 𝜃χT𝜃| p 2 . “continuum incidence geometry problem”.

    PIC

    integral equals = BRB R2BR | 𝜃χT𝜃| p 2 .

    “fractal geometry”.

    PIC

Reminder: RSn1(p q) means

  ^                                  n
∥f ∥Lq(Sn−1) ≤ Cp,q,n∥f∥Lq(ℝn)   ∀f ∈ 𝒮(ℝ ).

Conjecture (Restriction Conjecture). RSn1(p q) if and only if n + 1 n1 q n+1 p and p < 2n n+1.

First proved for S1 2 by Fefferman (1970) and Zygmund (1974).

Special things happen in 2, classical harmonic analysis techniques apply.

Same conjecture for RPn1(p q), where

  n−1        2    n
P    = {(ξ,|ξ| ) ∈ ℝ : |ξ| < 1}.
f^Lq(Pn1)q = |ξ|<1|f^(ξ,|ξ|2)|qdξ.

PIC

For n 3, open and active!

Restriction theory can be used to deduce continuum incidence geometry estimates.

Surprisingly, we can go the other way too (very recent progress, whereas the above direction has been well-known since at least the 90s).

Equivalent formulations of RPn1(p q)

Dual version is called “Fourier extension”:

                        ||∫                  ||
∥f^∥ q  n−1 =     sup    ||       ^f(ξ,|ξ|2)g(ξ)dξ||.
   L (P   )   g∈Lq′(Pn−1) ||  |ξ|<1n−1            ||
             ∥g∥Lq′(Pn−1)=1  ξ∈ℝ
(1 q + 1 q = 1). The integral equals:

|ξ|<1ne2πix(ξ,|ξ|2) f(x)dxg(ξ)dξ =nf(x)∫
     e− 2πix⋅(ξ,|ξ|2)g(ξ)d ξ
◟|ξ|<1-----◝◜---------◞ Eg(x)dx EgLp(n) Cp,q,ngLq(Pn1)S(Pn1)

Call the last inequality RPn1(q p).

Local, dual version: allows us to work with functions, F.T.

For any R 1, any BR n, we have

(∫        ′)p1′    1( ∫      ′  ) 1q′-
     |f(x)|p    ≲  Rq    |^f(ξ)|qdξ
  ℝn
for all f S(n) with supp f^ NR1(Pn1).

Call this RPn1,loc(q p).

RPn1(q p)Rpn1,loc(q p). First thing bounds Eg, while secound thing bounds f when we have supp f^ NR1(Pn1).

Let f S(n), supp f^ NR1(Pn1). Try to express f in trems of ext. op.

f(x) =Fourier inversionne2πixξf^(ξ)dξ =n1e2πix(ξ,ξ n)f^(ξ,ξn)dξndξ =e2πxnξn n1e2πix(ξ,|ξ|2) ^f(ξ′,|ξ′|2 + ξn)
◟----◝◜-----◞ =:gξ n(ξ)dξdξ n ξnξn + |ξ|2 =[R1,R1]e2πxnξn ∫
     e2πix⋅(ξ′,|ξ′|2) ^f(ξ′,|ξ′|2 + ξn)dξ′
 |ξ′|<1           ◟--=:◝g◜(ξ′)--◞
◟--------------◝◜----ξn-------◞ Eg ξn(x)dξn n|f(x)|p dx =n |I R1e2πixnξn Egξn(x)dξn| p dx R bounds |Eg|p Hölders’sn|IR1|p1 I R1|Egξn(x)|p dξndx         ∫    ( ∫               ) p′′-
  −1 p′−1                 ′ q′ ′  q
(R   )    I −1   |ξ′|<1|gξn (ξ )| dξ    d ξn
◟---------R-------◝◜-----------------◞
()
using RPn1(q p) Goal is to bound this last expression by
   p′∫    ∫            ′
R− q           |gξn(ξ′)|qdξ′d ξn
    ◟IR−1-|ξ′|<1-◝◜-----------◞
         ∥^f∥Lq′(N   (Pn−1))
               R−1
Lucy case: p q < 1, i.e. 1 < q p. Then
      − p′+1∫
(∗) ≤ R
            IR−1

                        1
∫   H ölder’s   1− 1( ∫  s) s
 A h  ≤   |A|  s   Ah    ,
s 1 (actually since h approximately constant on A)

RPn1(q p)RPn1,loc(q p) continued.

Spatial: x,f(x),Eg(x)

∫-----------|
|   |f(x)|p′dx|
-ℝn----------
∫         ′
   |Eg (x)|pdx
 ℝn

PIC

Frequency ξ:

PIC

g(ξ,|ξ|2) = g(ξ), supp f^ NR1(Pn1),

∫               ′
          |^f(ξ)|qdξ
 𝒩R−1(𝒫n−1)
∫       ′ q′ ′
  ′  |g(ξ )|d ξ.
 |ξ|<1

                                                     ′
∫         ′       (∗)     ′  ∫    ( ∫           ′   )pq′
    |f(x)|pdx ≤ ⋅⋅⋅≤  R−(p−1)            |gξn(ξ′)|qdξ′   dξn.
 BR                          IR−1   |ξ′|<1

Aiming for

          (                     ) p′
      − p′- ∫    ∫         ′ q′  ′ q′
(∗) ≤ R q         ′   |gξn(ξ)| dξ    .
            IR−1 |ξ|<1

Lucky case: p q 1.

                                                                ′
   Hölder’s inequality in ξn    ′         p′(∫    ∫            ′     ) pq′
(∗)        ≤         R−(p−1)|IR−1|1− q′            |gξn(ξ′)|q dξ′dξn
                                      IR−1 |ξ′|<1
R(p1) (R1)1p q = Rp q (1 = 1 q + 1 q)

Unlucky case: p q > 1. Hölder’s inequality goes in the wrong direction:

∫           (∫    )1
        1− 1s     s s
 Ah ≤ |A |     A h
for all s 1, h 0.

This is equality if h is constant on A.

PAUSE THIS.

Useful Harmonic Analysis tool

The locally constant property.

Convolution: Let f,g S(n). Define f g S(n) by

         ∫                 ∫
f ∗ g(x ) = ℝn f(x − y)g(y)dy = ℝn f(Y)g(x− y)dy.
See Young’s convolution:
∥f ∗g∥Lr ≤ ∥f∥p∥g∥q
when 1 + 1 r = 1 p + 1 q.

Example. g = χB (B is the unit ball in n),

          ∫
f ∗ χB(x) = y∈B f(x− y)dy
RHS is “average value of f on B(x)”.

f χB is approximately constant on balls of radius 1”.

Support property: supp f = A, supp g = B, supp f g A + B = {a + b : a A,b B}.

Convolution and Fourier Transform: fg^ = f^ g^.

Locally constant property: Let f S(n), supp f^ B1(0). Then for any unit ball B n and any x B,

            ∫
∥f∥L∞(B′) ≲m    |f|(x− y)----1-2-mdy.
              ℝn         (1+ |y|)

1 (1+|y|2)m is 1 on |y| 1.

PIC

Digesting f 0.

For any unit interval I n, x I,

          ∫
∥f ∥ ∞ ′ ≤        f(x− y)dy.
   L (I)   (− 12,12)

Suppose this:

PIC

LHS has to be constant.

          ∫
∥f ∥L∞(I′) ≲ (    )f(x− y)dy.
            − 12,12

PIC

        (∗)∫
∥f∥L∞(I′)≲        f (x − y)dy
            (− 12,12)

Lemma (Locally constant property). Assuming that:

  • f S(n)

  • supp f^ B1(0)

Then for any unit ball B1 n and any x B,
            ∫
∥f∥ ∞  ′ ≲      |f|(x− y)----1----dy.
   L (B ) m   ℝn         (1+ |y|2)m

The proof of this fact is more important than the statement – we will be using the strategy in future.

Proof of locally constant property. Let f S(n), supp f^ B1(0). Let φ Cc(n) such that φ 1 on B1(0), supp φ B2(0).

By Fourier inversion:

    ˇ    ˇ      ˇ
f = (f^) = (^fφ) = (^f)∗ ˇφ = f ∗φˇ.
Let x0,x B1 (unit ball in n).

|f(x0)| = |f(x0 y)ˇφ (y)dy| |f|(x0 y)|ˇφ (y)|dy =|f|(x y)|ˇφ |(y (y x0))dy m|f|(x y) 1 (1 + |y (x− x0)
◟--◝◜--◞ |xx0|<1|2)mdy m|f|(x y) 1 (1 + |y|2)m
Returning to RPn1(q p)RPn1,loc(q p)

∫        ′     ∫         ′
    |f (x)|pdx ≲    |fφBR |p dx
 BR             BR
where φBR S(n) satisfies φBR 1 on BR, supp φBR^ BR1(0).

̂fφBR =         ◟^f◝◜◞        ∗ φ◟^B◝R◜◞ (ξ)
       R−1 neighbourhood of 𝒫n−1 R−1 ball
supported in 2R1-neighbourhood of Pn1.

Repeat steps of proof:

BR|f(x)|p dx R(p1) I R1 (|ξ|<1|hξn(ξ)|q dξ) p qdξn

PIC

       |------------------|
       |^       ′  ′2     |
h(ξn) =-f ∗-^φBR(ξ,|ξ|-+-ξn)

6 Tube incidence implications of Fourier restriction

Last time: LOCALLY CONSTANT PROPERTY (think of it more as “heuristic”).

If supp f^ B1 then

What if supp f^ Bλ(0) (so |f|const on λ1-balls)?

     ˇ^
f = (fφBλ) = f ∗ ˇφBλ,
where φBλ(ξ) = φB1(λ1ξ).
         ∫                       ∫
φˇB  (x ) =   e2πix⋅ξφB  (λ −1ξ)dξ = λn    e2πi(λx)⋅ξφB (ξ)dξ = λnφˇB (λx).
   λ      ℝn        1             ℝn          1            1
|ˇφB1| is approximately averaging over a 1-ball. |ˇφBλ| is approximately averaging over λ1-balls.

What about supp f^ Bλ(v)?

Same thing happens, because eixsomethingf will have Fourier support in Bλ(0), and taking absolute values means we don’t notice the eixsomething (modulation).

Returning to RPn1(q p)RPn1,loc(q p).

∫        ′    ∫               ′
   |f(x)|p dx ≲    |f (x)φBR (x )|pdx
 BR            BR
φBR(x) S(n), |φBR| 1 on BR, supp φBR^ BR1(0).

Last lecture

     (                              )             (             ) p′
∫    (∫       ^       ′  ′2     q′  ′)  (∗)  −1 1− pq′′ ∫    ^   q′   q′
 I−1    |ξ′|<1  |f ∗ ^φBR (ξ ,|ξ |+ ξn)| dξ  ≲ (R  )      ξ∈ℝn |f(ξ)| dξ   .
 R     ξ′∈ℝn−1

Can choose φBR^ such that

Case 1: p q 1. LHS of () (using Hölder) is

|IR1|1p q (I R1|ξ|<1(|f^||φBR^| 1 q+1 q (ξ,|ξ|2 + ξn))q dξdξ n) p q |IR1|1p q (n(|f^||φBR^|(ξ))q ddξ) p q (|f^|q (ξ η)|φBR^|(η)dη) 1 q(∫      q) 1q
    |φ^BR |q
◟----◝◜----◞ 1 (Holder) |IR1|1p q (nn|f^|q (ξ η)|φBR^|(η)dηdξ) p q |IR1|1p q (n|f^|q(ξ)dξ) p q

Case 2: p q > 1. Use P1 2 for intuition.

PIC

Imagine a function g which is approximately constant on each R1 cube Q. Think of g as g = QgQ.

     (                 ) p′-
∫      ∫        2        q′
            g(t,t + ξ2)dt    dξ2.
 IR−1   |t|<1
Note
∫        2
 |t|<1g(t,t + ξ2)dt ∼ gQ.
Therefore,
∫
     g(t,t2 + ξ2)dt ∼ C
 |t|<1
if |ξ2| cR1. ( C for all ξ2 IR1).

|(P + (0,ξ2)) Q| R1 for |ξ2| cR1.

|IR1|1p q + p qC p q = |IR1 |1p q(|IR1 |C) p q ( R1|t|<1g(t,t2 + ξ2)dtdξ2) p q

Important: locally constant property means we didn’t need p q < 1, like before.

Make the intuition rigorous.

                                                         p′
                       (∫                           ′  ) q′-
LHS of (∗) ≲ |IR−1| max       (|^f|∗|^φBR|(ξ′,|ξ′|2 + ξn))qdξ′
                 ξ2∈IR−1  |ξ′|<1
Consider the integral:

|ξ|<1(|f^||φBR^|(ξ,|ξ|2 + ξ n))q dξ =|ξ|<1 (n|f^|(η)|φBR^|((ξ,|ξ|2 + ξ n) η)dη)q dξ |ξ|<1 (n|f^|q (η)|φBR^|((ξ,|ξ|2 + ξ n) η)dη)dξ Same pointwise Holder Rn(R1)n1n|f^|q (η)dη R1n|f^|q (R1)1 Rp q (|f^|q ) p q

˙

Index