Lemma (Locally constant property). Assuming that:

  • fS(n)

  • suppf^B1(0)

Then for any unit ball B1n and any xB,
            ∫
∥f∥ ∞  ′ ≲      |f|(x− y)----1----dy.
   L (B ) m   ℝn         (1+ |y|2)m