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1 What is Fourier Restriction Theory?

Main object: f:R? — C, f(z) = D oter bee?™ w8 b € C.
Notation. We will write e(z - £)ie?™@¢.

r € R? is a spatial variable, and ¢ € R is the frequency variable.

The frequencies (or Fourier transform) of f is restricted to a set R (where R we will always be finite
—so no need to worry about convergence issues).

Goal: Understand the behaviour of f in terms of properties of R.

Example.

(i) Schrodinger equation:
N
u(z,t) = Z be(nz + n’t).
n=1

Easy: (2mi0; — A)u = 0, with initial data u(z,0) = Zg_l
(x,t) = (z1,22). Then since e(nz +n?t)ie((n,n?)-(z,t)), we might consider R = {(n,n?) :

n=1,...,N}.

bpe(nz).

(ii) Dirichlet polynomials:
D(t) = % bpetlioen)t,
n=N
with b, = 1, partial sums of Riemann Zeta function. We might consider R =
{35 log n}iZN
Both avoid linear structure.

{logn} is a concave set (getting closer and closer together).
{(n,n?)} lie on a parabola.

Guiding principle: if properties of an object avoid (linear) structure, then we expect some random or
average behaviour.

The above examples avoid linear structure using some notion fo curvature. See Bourgain A(p) paper:
— extra behaviour.

Square root cancellation: If we add £+1 randomly N times, then we expect a quantity with size N z,

Theorem 1.1 (Khinchin’s inequality). Assuming that:

o {en})_, be IID random variables with P(e, = 1) =P(e,, = —1) = 3




e 1<p<
e r1,...,xny € C
Then

1 1
P\ » N 2
(E ) ~p (Z |xn|2> = [|zn]|2.
n=1

N
§ Enln
n=1

Notation. ~, means ~ but the constant may depend on p.

Proof. Without loss of generality, z1,...,z, € R. Without loss of generality, ||z|2 = 1.

p = 2: want to show E (\Zn €n$n|2) ~ L

E EnZn Y EmIm | = E(enemTnTm) = nl® + TnTm Ee, Eepy,.
(Ton ) = teorim = i+ £ T oty
What about general exponents p?
P o0
0

P
E ( Zena:n Zenxn > a> da.

The equality here is the Layer cake formula, which is true for any p € (0, 00).

Let A > 0. Study the random variable e*2=n &n%n € (0, 00).
1 1
AS entn ) AenTn | AenTn _ ZeAn 4 o ATn
E(e )E(Inle >InlEe 7|n| (26 +26 >

22
Fact: %ez + %e‘z < e’z (to check, use the Taylor series). So we can get

IA

E(e* POy n@n) (Chebyshev’s inequality)
H N lenl*/2

n

)\2

6/2

aP(e} Xm0 > @)

IN

By symmetry,
|)\ > Enzn{ < \2/2
aP(el” &m >a) Set /e

>A>:p(

2
Choose o = e":

P
> )\p> < N2,

'

E Endn
n

E Endn
n



Use in Layer cake:
P o0
N ( Z‘fnxn ) N / e " da ~p L.
- 0

Lower bound: use Hélder’s inequality. X = )" &,%,.

E(XX) < (E(X[")"/7(E|X|7)"/7.
—_—— —

=1 <,1

~P

Can you find a more intuitive proof? E-mail Dominique Maldague.

2
217/

Corollary. E ( lzfj:l en fn(x)’pdx) o f‘anzl @2 da.

Useful for exercises!

Return to Fourier restriction context.
N
f(x)zZe(nx) R ={1,...,N}
N
g(z) = Ze(n%) R ={1%2?,...,N?}

Both f, g are 1-periodic. So study them on T = [0,1]. f(0) = N, |f(z)| ~ N for € [0,c+]. g(0)iN,
lg(z)| ~ N for z € [0,c5=].

/[071] |f(x)]*de = ;n/[OJ] e((n — mz)de = N).

/[o,u st = nzm:z/[o,l] e((n? — m?)x)de = N.



v ™

[ lf@pde = no2 4 et
(0,1]

/ \f(2)[Pdz > Np/2 + NP2,
[0,1]

For the first one, N?~! (organised behaviour) dominates as soon as p > 2, and for the second one,
NP/2 dominates for 2 < p < 4 (“square root cancellation behaviour lasts for longer”).
Lecture 2



2 Exponential sums in L*

Recall: studying f(z) = > ¢ e(§-2). When R does not have (linear) structure, expect |f(2)| ~ IR|z
(“sqrt cancellation”) in an appropriate sense (in L), more than when R is structured.

Linear R f(x) = ZnN:]_ e(nx) vs convex R g(x) = 25:1 e(n’x).

Have

[ is@rar=n= [ jg@pa,
[0,1]

[0,1]
Have |f(x)| ~ N on [0,cN~1], and |g(x)| ~ N on [0,cN~2].

L? does not distinguish f,g. L> does not distinguish. However, 2 < p < oo does.

What about 1 < p < 2?7 We don’t usually study this range because the estimates tend to be trivial /

not interesting.
Focus on 2 < p < co. Preduct size of
[
[0,1]

Square root cancellation lower bound:

Holder’s P
N= [ e (/ |f|2"2’) (1)°
[0,1] [0,1]

o



= NP2 < f[0,1] | f|P.

Constant integral lower bound:

/ T / P 2 NPN
[0,1] [0,eN—1]

/ gP > / 9P 2 NPN-2
[0,1] [O,cN—2]

SIS N/ 4 N7 [ gl S NP2 4 N2,

Note that for the f bound, NP~! is bigger than NP~! (as long as p > 2), so the constant integral

dominates!

For g, if 2 < p < 4, the square root cancellation dominates, but for p > 4 the constant integral takes

over.

Assuming;:

Theorem 2.1. - p > 2 - b, € C Then:

/

< NEHbn5-

Proof. Consider: ZNzl bne(mc), b, € C.

/01] Zb e(nx) Zb e(nx) /[01

< (N3 |by]l2)P~ 2||bn||2
P _
= N> 1||bn||g

p—2 2

d:c<

Zb e(nx)

dx

Note that this is sharp when b, = 1.

SN bne(n2x). Focus on p = 4.

n=1
/ Zb en:c
[0,1]
2 2 2 2

The integral vanishes unless n{ — ng = njy — ns.

ni M2 N3 N4 01]

Number Theory lemma: If m € Z, then
# divisors of m < logm.

Follows from unique prime factorisation.

de =33 > bubusbusbns / o(n? 413 — 2

CS

n3)x)dz.



Warning. The above lemma is false.
See correction later.

For fixed nq,ng,
#{(ng,nyg) :n? —n2 = (ng +no)(ng —ny)} <logN.

=:Snq,ng

Hence

4
dz < Z Z ‘bn1bn3| Z bnzm

ni ng (n2,m4)€ESnq ,ny

< (log N) bl

Z bne(n’z)

n

[071]

We will now use $ to mean < up to powers of log N.

2<p<4 p=5+5%0€[0,1], h=3, bue(n’a), [hlly < 1RISIRIGT" S onl8l1onllz™ = [[bnll2-

p >4
— cs 1 _ p_
/[0 1]|h|p§ IRIIES Hballz < (N2 [1bnll2)P~*[1ballz = N2 72[[ba]5.

Assuming;:

Theorem 2.2. - 2 > p Then:

/

p
dz € (1= N572)|ball5.

Z bne(n’r)

Sharp by b, = 1.
Positive take away: estimates are sharp, proofs are elementary. Easy to think of sharp examples.

Number Theory counting idea shows:

/ ] lu(z, t)|Sdzdt < ||bn|S u(w,t) = Y bpe(nz +n’t)
[0,1] In|~N
nez
/ . Ju(z, t)|*dedt S ||bnl|3u(z,t) = Z bue(n -z + |n|?t)
[0,1] In|~N
nez?

Sharpa 6, 4= Derit -
Strichartz estimate for periodic Schrodinger equation, observed by Bourgain in 1990s.

Negatives: on T? — peip = 13—0, but this technique can only work on even integer values of p.



T!, T? only sharp Strichartz estimates per Schrodinger until 2015!

2015: Bourgain-Demeter proved (I, L?) sharp decoupling estimate. Gives sharp Strichartz estimate
for Schrodinger in T¢ for all d.

Proved earlier: »

N2 de < (14 N52)[ba 5.

> e (30
o~ | \V

(where n ~ N means N <n < 2N).

f[ovNZ]

an €[0,1], ant1 — an ~ &, Gng2 — Ang1 — (Qpg1 — an) ~ 5.

Conjecture:
P
bne(anz)| do S (1+N272)|ba

neN

52N
Lecture 3 Example: {a,} ~ {%} N
n—



3 Introduction to Fourier Transform

Correction for lecture 2: Number Theory Lemma.

True statements:

Z # =+ (n) SlogN,

1<n<N
and # = (n) <c né.
See Terence Tao notes online.
Explaining # + (n) <. nf: Ve > 0, Je. € (0,00) such that # <+ (n) < Con® for all n > 1.

We will be using 5 to mean “< but up to sub-polynomial in n”.

o

Recall: n ~ N means N <n < 2N.

Question:

dz g (14 N57%)||ba 3.

E b'll € a'll

n~N

2
For example, a, = §=.

{an} - [Oa 10]7 Ap41 — Ap %7 (an+2 - an+1) - (anJrl - an) ~ %

Reasonable conjecture?
Yes, reasonable.

Khinchin’s inequality: May select b, € {£1} so that
P

1, v
[0,N2] 0,N2]

Constant integral: b, =1. (1,1,1,...,1).

oo

Zb e(anx)

p

1 P
A2 2 3z f g N0~ N = N
C

Warning. Enemy scenario: {a,} = {, /%}iﬁ » (technically {—\ / ?’NT’”} if we want to satisfy
the conditions mentioned above).

10



(bn) = (1,0,...,0,1,0,...,0,1,...,0). Length N vector with N2 many 1s. Have:

Lol o () e /.

0,N?] | N<m2<an

p
dx

Z ()

%

We can calculate that the above expression is in fact > IV 5-3 (which breaks the conjecture
until p > 6).

N

It turns out that this is (roughly speaking) the only problem.
Why do we care?

b, =1, p=4. Then
4

dz 5 N* = [{a,} "

Z e(anx)

n

o

— #{a'nl +an2 = Qng +&n4} S ‘{aTLHz

— Convex sequences have minimal additive energy.

Decoupling doesn’t know how to take advantage of b, = 1.

3.1 Fourier Transform on R"
f:R® = C, f € S(R") Schwartz function: [|z%0° f|~ < oo for all a, 3.
fo) = [ s

x is the spatial variable, and £ is the frequency variable.

11



Facts:

« If f€ &, then f€S.

o Plancherel’s Theorem: ff(m)mdx = ff(é)g(ﬁ)dﬁ
- f@) = fl =

e A >1

AR

On the left: mass of f is smashed by a factor of A. On the right: the mass of f is stretched by a
factor of A\, “L! normalized”. ||fy||1 is independent of \.

There is a general formula for f/o\A where A is an affine transformation.
e cftg=cf+7.

o Translations are dual to modulations:

frl@) = flx—7)
fr(€) = e 72T f(¢)
flau(z) = ™7 f(x)
)

Basic question about f LP to L? boundedness?
Plancherel’s: B

17 = [ 77 = [ 7= 1113
(isometry on L?).

p=1,qg=o0:

‘/e—Qm'z{f(m)dm

< [1r@lde = 71s

12



(contraction from L' to L°°).
By interpolation (Marcinkiewicz): ||f||q <||fllpfor 1 <p <2 %—l—% = 1 (Hausdorff-Young inequality).

Are there any other (p, q) for which
1fllq Spa [1f1l4?

Attempt 1: Let ¢ € C°(R™) (compactly supported smooth function on R™), with supp ¢ C B;(0).

Consider f(x) = 25:1 epp(x — vg).

Choose vy, so that {Bj(vg)} are not overlapping. Then

1l = =3 [ ez~ v)rde = Nljg|.
- o] [

N N
F©) =D ene ™ p(€) = (Z 5) B(6).
k=1 k=1

We will use Khinchin’s inequality.

Z erp(x — vg)
k

Also

~ N
Lecture 4 || fllq ~ N2|&|l4-

13



4 Introduction to Fourier Restriction

Theorem (Hausdorfl-Young inequality). Assuming that:

—_

<p<2

. =1

+

3 =
Q=

Then R
1 Fllg < Ifllp-

Proof. The inequality is true for p = 1, ¢ = oo and for p = 2, ¢ = 2 the inequality is true since we

have equality (Plancherel).

For values in between we can interpolate.

Are there any other (p, q) for which
1£llg S 11F11p?

We saw that 1 < p < 2 was necessary (translations / modulations, Khinchin’s inequality).

Scaling: Plug in f)(z) = f(Az) which is L>-normalised (|| fallco = ||f]lcc). Then ?;(f) =A"f(A

which is L'-normalised (|[£x]1 = ||f]1).

(Lhs of (1)1 = [ [A(@)frg =a e [Ife s

n

(RHS of (%)) = /R A@)Pdr = A7 / |f(z)|Pdz.

So we need for all A > 0: R
AT fllg SATES Nl

Soweneed —n+ 2 =—-2 je L41=1.
q p’ q

=

Classical questions

What is Cp 4 the smallest constant such that ||f||q < Cpgll fllp?

Which functions f satisfy ”;Hq
P

=Cpq?

2014:
1fllg < Cp.qll£llp — dist, (f, maximisers (Gaussian)).

14
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Fourier restriction asks which (p,q) permit estimates ||ﬂ|Lq(R) S I fllLemny (R is the restricted fre-
quency set, R C R™).

Example. R = B;(0) C R”, unit ball —: Basically, sitll governed by Hausdorff-Young inequal-
ity.

Example. R = B1(0) N {z,, = 0} (measure 0 subset of R").

Rz (p — q) means
I fllLary S I fIlLe@ny Vf:R" — C Schwartz

Always: Rg (1 — o0) true for all R.

In the second example, only this trivial statement is true (i.e. Rg(p — q) is false for all other values
for p, q).

Let R = 5"~ ! be the unit sphere in R™. Consider
IflLacsn-1) S [1fllLegn)

where L9(S™~1) uses the usual surface measure do on S™~ 1.

Notation.
fz) — fla) — f@) =3 f@)
—~— ~— —~— ~—
€S(R") S

ES(R™) \Gsf")/ €S(R™)

We may call "the “inverse Fourier transform”.

Let ¢ € C°(R"), R-valued, > 1 on B (0), with support in By(0).

May also assume @ is R-valued, ¢ > 1 on B.(0). ¢ bounded, |¢(z)| <, (|22 +1)"™Vm. |@(x)| behaves
like X B;(0) in LP.

15



Snaall

Spaall

Consider dilates fr(z) = g(R™1x)e?™ v R > 1.

Frequency side |f1;(§)| ~ R"Xp, (0 () (L'-norm).

/S’n—l |E(§)|qdo(§) ~ w

—o(Bpy_1(n)nSn—1)

Bp-1(n) N S"! cap of radius R™*. Spacial side |fr(z)| ~ Xp,(0) () (in L>®-norm).

16



height 1, [o. [fr(z)[Pdz ~ R™.

n—1

R SR¥,n-22<

3

Consider: gr(z) = e Yrg(R tay,..., R e, 1, R 22,).

Frequency: [g,(€)| ~ |cylinder| ™! xeytinder(§)- |cylinder|™'| — (R—1- R™'R™%)~1 = Rntl,

17



/ . |92(6)|9do (&) ~ RV (cap of radius R™1) = R FDa—(n=1),
Sn—

Spatial side: |gr/ ()] = Xeylinder(®) (L°°-norm).

v
-

[ lan(a)r = R4 = R,

_n-1 n+1 .
- R <R, = n+l_%§%' Implies B.

18



Lecture 5 On Monday, we will build examples A such that T sees all of S™1L.
R=S8""1CR"

Consider the statement R
I fllzacsn-1y S I flloe@n)-

(recall that we called this Rgn—1(p — q)).
Fix ¢ € C°(R™), ¢ ~ xB,(0)- For computing L? norms, || ~ x5, (0)-
Wave packet function with localised spatial and frequency behaviour.

Last time: fr(z) = e VR@(R 'ay,..., Rz, 1, R 22,).

Frequency: |?1\3 €3]

Kﬂi
<
pet
Luz,{ M/i KAWL
0
v
rq
S
fsnfl |J/cl\%|qdJ
n+1_n—1 < n+1
9 g

Spatial: |fr(x)]

19



f]Rl |fR|p

Note: sphere near n looks like (¢',1— 2|¢/[?), S"~1n supp fr ~ cap of radius R~1.

Jﬁf/}.
1

o

Naive attempt: gr(z) = R"$(Rx)

Frequency: |gr(€)|

20



N ;@m ~A

Jsn-1 [gR()]7dE ~ 1

Spatial: |gr(z)]

@ e R

['lgrl? ~ R7" - R"P.

Deduce: 1 < R™ 7, so
p=>1

(trivial).
|9r| ~ 1 on S"~! made ||gr| ra(sn-1) €asy to compute.
Could we improve things?

Could think about R ~ 1: then [|gr||La(sn-1) ~ 1, ||grllp ~ 1. This is more efficient, but we can’t take
a limit. So not so useful.

Build a function H(z) which satisfies |H(£)| ~ 1 on §71.

Let {0} be a maximal collection of ~ R~!-spaced points on S"~1 (#{0} ~ R*~1).

21



For each 0, let Agl : R™ — R™ be an affine map which sends
B1(0) = R™' x -+ x R™! x R ellipsoid centered at 0, tangent to S™ ! at 6.
Define pg = p o Ag, H(x) = >, Po(x).
H() = Yo pa(€) ~ 1 on S"7! (actually on R™2-neighbourhood of S™71).
Jgns 1H(E)]9do ~ 1.
H(z) =329 po(x).

|pg(x)| Frequency:

| 2o ()| Spatial:

22



esssupp H D |J, esssupp F.

“bush of tubes”

~ R» ! many R x --- X R x R? tubes in R~ !-separated directions

[ m@re= [ 15 @@

o C-valued function

23



To i
V4 nsb
— [ ew\cﬁ ' %T(w)
&> 4 "
« For wmwn@
LV- Norms

Compute

(Rnfl)% -R™ (*)
Consider overlap of Ty on AS"~! (X € (R, R?)).

Average overlap on AS"1:

~ )\~ (D)
]lg\snl;XTs AT ;/}\

X1, ~ )\—(n—l) ZRn—l — )\_(n_l)RQ(n_l).
Snfl
6

A

-

S
ik

Cu(7 00» (“-@l/'MS K

Not too hard to check that the number of active Tp on AS™ ™! is ~ A~ (n—1) R2(n—1)

24



Now calculate: .
3

dzx.

()~ Z //\<|a:|<2)\

R<A<R?

Z XTy
9

N———
[)\—(n—l)Rz(n—l)] % An

1 5 Rf(nJrl)p[RQn +R(n71)%Rn]

2n

Lecture 6 Two cases: either R?" dominates or the other term dominates. So |p < it
n

25



5 Equivalent Versions of Fourier Restriction

Searching for (p, q) for which

[fllzagsn-1) < CpgnllfllLr@n)-

(1)
R =1[0,1]""1 x {0}

. “continuum incidence geometry problem”.



(7L

. b
integral equals = ZBRQBRQ fBR DIFPEARE

“fractal geometry”.

ot Voc al

Reminder: Rgn-1(p — ¢) means

[ fllzasn-1y) < Cpgnllflla@ny — Vf € SR™).

Conjecture (Restriction Conjecture). Rgn—1(p — q) if and only if n + 1 — ”T_l < ntl and

A p
n
p< ol

First proved for S' C R? by Fefferman (1970) and Zygmund (1974).
Special things happen in R?, classical harmonic analysis techniques apply.
Same conjecture for Rpn-1(p — ¢), where

Pl ={(& [€*) e R™ 1 [¢] < 1}

1L pory = Siejr 1F(E 1€ 9dE.

27



For n > 3, open and active!
Restriction theory can be used to deduce continuum incidence geometry estimates.

Surprisingly, we can go the other way too (very recent progress, whereas the above direction has been
well-known since at least the 90s).

Equivalent formulations of Rp.—1(p — q)

Dual version is called “Fourier extension”:

Pl = sw | [, FelePieae.
geL? (P™h) ceR™1

191 g7 pr—1,=1

(£ + L =1). The integral equals:

/ /6—2””'(57|5|2)f(x)dxg(§)d§: f(x)/ e=2min (€16 g(£)dg d
lel<1 JRe R™ <1

Eg(z)
IEgll v @y < Cpogmllgll parcpn-1) vS(P )

Call the last inequality R},,._.(q¢" — ).
Local, dual version: allows us to work with functions, F.T.

For any R > 1, any Br C R™, we have

1 i
7

([ )" st ([ if@ra)’

for all f € S(R™) with Suppfg Np-1 (P 1),

Call this R5C, (¢ — p').

*,loc

R}‘,‘)nfl(q/ — pl) — anfl
have supp f C Np-1(P"1).

(¢ — p'). First thing bounds Fg, while secound thing bounds f when we

28



Let f € S(R™), Suppfg Np-1(P"1). Try to express f in trems of ext. op.

f(.’L') Fourier 1nversion / egﬂ-ix{f(g)dg

n

/Rn 1 /R62’”'“"5/@")?(5',£n>dgndgf

(e 72y o
= /ReQﬂ'Tnfn A 1 6271'137 (f ,1€ | )f(g/, |£/‘2 +€n) dfldfn gn — gn =+ |£l|2
n— %,—/
=:9¢, (&)
— / 2™ Tnén / e2miz-(€',1€'1) J?(f/, |§/|2 + &) de dg,,
[ R— 1 R 1] ‘5/‘<1 \—,F
=G9¢n
Ege,, (z)
p/
/ \f(x)|p/dac:/ / eXmimnén Bge (2)d¢,| da R* bounds /|Eg\p/
n n IRfl

Holders’s r_q
& / L ]? / |Ege, " dénda
R’!L 1

R—

P
q

< (R / / ge, (€))7 de’ ) de, using Riu—1(¢ — 7)
1 \Jig<i

()

Goal is to bound this last expression by

*// g6, (€17 d¢'dé,

H‘f”qu(NR,1 (pn—1y)

Lucy case: < 1l,ie. 1 < . Then

<r
-

Holder’s 1 %
/h < lAlE (/ hs) :
A A

Lecture 7 s > 1 (actually =~ since h approximately constant on A)

R;;n—l(ql — p/) = R;;llocl

Spatial: z, f(z), Eg(x)

(¢ — p') continued.

[ 1s@P e

29




Frequency &:

g(&,|€'2) = g(&"), supp f C N1 (P 1),

/ Fe) de
N1 (Pn=1)

[ aera.
[g]<1

! (*) /7 ’
/ [f(@)Pde <. < RO *1)/ (/ |9, (€17 d§’> de,.
Br I [¢1<1
Aiming for

)< R (/ / 96, (¢ |qu>

R—1

e

Lucky case: z—: <1.

Hoélder’s inequality in &, _
() & R0/ (/ / o (€ |qd§d£n>
<

+ )

SR
Q

30
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Unlucky case: f]i: > 1. Holder’s inequality goes in the wrong direction:

oo (f)
A A

forall s > 1, h > 0.
This is equality if h is constant on A.

PAUSE THIS.

Useful Harmonic Analysis tool

The locally constant property.

Convolution: Let f,g € S(R™). Define f x g € S(R™) by
frglx) = - flx=y)g(y)dy = - f(Y)g(z —y)dy.

See Young’s convolution:
1 *gller < 1£1lpllgllq

Whenl—l—%:%—&—%.

Example. g = xp (B is the unit ball in R™),

fe (@)= / Sy

RHS is “average value of f on B(x)".
“f x xp is approximately constant on balls of radius ~ 1.

Support property: supp f = A, suppg = B, supp fxg C A+ B={a+b:a€ A,be B}.
Convolution and Fourier Transform: E = f* qg.

Locally constant property: Let f € S(R"), suppfg B;(0). Then for any unit ball B C R™ and
any ¢ € B/,
1

—dy.
T+

= S [ 11 =0)

WISNIOH|y|§1
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Digesting f > 0.

For any unit interval I’ CR", z € I,

flemr < | Sy

Nl=
Nl

Suppose this:

B (7(3

T\

LHS has to be constant.

w5 [ S0y

1
’2

N|=
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t MJrL onS (w‘S}‘&/\\'

0 v L~

N ,\\ferJ«\s
>
(+)
flsan & [ fa= vy
(=23)
s N
Lemma (Locally constant property). Assuming that:
o feSMRM)
« supp f € B1(0)
Then for any unit ball B! C R” and any =z € B/,
£y Sm [ 1l = 4)
o (Br) Sm T —y) Ay
ERED S g L+ [P
N J

The proof of this fact is more important than the statement — we will be using the strategy in future.

Proof of locally constant property. Let f € S(R™), suppfg B1(0). Let ¢ € C°(R™) such that ¢ =1
on B1(0), suppy € B2(0).

By Fourier inversion:
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Let 2o,z € B! (unit ball in R").
ol = | [ oo = )]
< [ 1710 - )11y
— [ 171w = )17l ~ (v o))y

1
S’m/|f‘(x_y)(l—|—|y—(l‘—xo)|2)mdy
|z—20|<1
1

*,loc

Returning to R}, .(¢ = p') = R3.5 (¢ —p')

[ t@ras [ ifen,pra
Br Br

where g, € S(R™) satisfies ¢, ~ 1 on Bg, supp g5, € Br-1(0).

foBn = F x @on (€)
~~ ~~

R~! neighbourhood of P*~1 R~1 pall

supported in 2R~ '-neighbourhood of P~ 1.

Repeat steps of proof:

LN

53\

F@)'de < R0 /I ( /|§| 1|hgn(§/)|q,d5/> de,
R-1 <
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Lecture 8

=[x @€, €2 + &)
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6 Tube incidence implications of Fourier restriction

Last time: LOCALLY CONSTANT PROPERTY (think of it more as “heuristic”).

If supp fg B then

(1) Imagine |f| ~ const on unit balls.

2) f=(@B)=f*¢B,-

What if supp f C Bx(0) (so |f] ~ const on A~!-balls)?

f:(fSDB/\):f*(p\B//\7

where ¢p, (£) = o5, (A 71E).

¢B, (x) =/ T pp, (ATHE)E = /\/ MO o, (€)AE = A" G, (Ax).

n

|0, | is approximately averaging over a 1-ball. x|@g, | is approximately averaging over A~ 1-balls.
What about supp f C By (v)?

Same thing happens, because e'@s°mething ¢ wil] have Fourier support in By (0), and taking absolute
values means we don’t notice the e?*s°mething (modulation).

*,loc

Returning to R},,._, (¢ = p') = RP’n,l(q’ —p).

/B S de 5 / (@) s dz

Br
¢Br(z) € S(R™), |pp,| ~ 1 on B, supp 95, C Br-1(0).

Last lecture —

J

Can choose ¢p,, such that

e

~ , , , (*) _ _p ~ , a
[ Fe e P +corag | S a7 ([ iferas)”

RrR—1 EleRn—l

o @8Rl ~ R"XB,,_(0)-

¢ @Bl ~ 1.
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Case 1: p—, 1. LHS of (*) (using Holder) is

’
P
7

< |Ipa % ( / / RGE Ermbasttalde +§n>>q’d£'dan>

S A Y RGREAT)T ddg) ’

< (/17 €~ wigal dn> </|¢BR|)
St 8 ([ 17 € miemlo )dndé)

L
1-2 / v
~ |[Ig-| "« R
R | fla’ (£)d¢

Case 2: > 1. Use P! C R? for intuition.

s

(Holder)

Imagine a function g which is approximately constant on each R~! cube Q. Think of g as g = ZQ 9Q-

’
P
7

/ (/ g(t,t2+f2)dt>qd§2.
Ip— [t]<1

/ gt t? + &)dt ~ gg.
|t\<1

Note

Therefore,

/ g(t, >+ &)dt ~ C
It |<1
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Lecture 9

if |&] <cR7 (< Cforall & € Ix-1).

|(P"+(0,&)) N Q| ~ R~ for || < cR™.

’
b_
7

= s (Lra1C)F (for figer 9882 4+ E2)tdE: )

’
P
7

’
~ | Iga T OO

Important: locally constant property means we didn’t need % < 1, like before.

Make the intuition rigorous.

n\"@\

LHS of (x) 5 [Tp-1| _ max ( IR R A +§n>>q’df'>

§2€lp1

Consider the integral:

o~ ’ o~ ql
/ (F) * 1GBaI(E €' + €0))7 dE’ = / (/ f|<n>|@|<<§’,|s'|2+fn>—n)dn) de’
€/|<1 1<t \Jrr

1€
< / ( / A (sl (e |§’|2+§n)—77)d77> d¢’ Same pointwise Holder
[¢/]<1 Rn

~ R (R / I ()

n
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