%! TEX root = FC.tex % vim: tw=50 % 22/02/2025 12PM Recap: $M$ a \gls{ctm} of $\zfc$ (or a sufficiently large finite fragment). $\Pbb \in M$: \gls{dense} / \gls{filt} / \dgen. \begin{example*} $\Fn(\omega, 2)$ produces a new function $f : \omega \to 2$. Cohen forcing. \end{example*} \begin{example*} $\Fn(X, Y)$ produces a surjection $f : X \to Y$. $\Fn(\omega, Y)$ COLAPSE of $Y$. \end{example*} \begin{example*} $\Fn(X \times Y, 2)$ produces an injection $f : Y \to \mathcal{P}(X)$. \end{example*} If $M$ is a \gls{ctm} of $\zfc$, then $\mathcal{D}_M \defeq \{D \subseteq P \text{ \gls{dense}} : D \in M\}$ is countable, so by Theorem, we have a \dgen[\mathcal{D}_M]. \begin{fcdefn}[$P$-generic over $M$] We say $F$ is \emph{$\Pbb$-generic over $M$} if it is \dgen[\mathcal{D}_M]. These always exist if $M$ is a \gls{ctm}. \end{fcdefn} GOAL: Build an extension $M[G]$ such that $M \subseteq M[G]$, $M[G]$ a \gls{ctm} of $\zfc$, $G \in M[G]$ and $M[G]$ is minimal. \subsubsection*{Names} \textbf{Idea:} Think of elements of $\Pbb$ as ``truth values'' for the von Neumann construction. \begin{align*} \Name_0^{\Pbb} &\defeq \emptyset \\ \Name_{\alpha + 1}^{\Pbb} &\defeq \{\tau : \tau \subseteq \Name_\alpha \times \Pbb\} \\ \Name_\lambda^{\Pbb} &\defeq \bigcup_{\alpha < \lambda} \Name_\alpha^{\Pbb} \end{align*} Then \[ \Name^{\Pbb} \defeq \bigcup_{\alpha \in \Ord} \Name_\alpha^{\Pbb} \] is the proper class of all names. Consider: $\Pbb = \{0, 1\}$. Then $\Name^{\Pbb} \cong V$. Since this is a recursive definition using \gls{abs} concepts, being a name is \gls{abs} for transitive models: \[ \{\tau : M \models \text{$\tau$ is a $\Pbb$-name}\} = \Name^{\Pbb} \cap M .\] TODO \subsubsection*{Examples} $\emptyset \in \Name_1^{\Pbb}$, \[ \tau_p \defeq \{(\emptyset, p)\} \in \Name_2^{\Pbb} \] ``The name for a set that contains $\emptyset$ with value $p$.'' \[ \tau_{pq} \defeq \{(\tau_p, q)\} .\] ``The name for whatever $\tau_p$ describes with value $q$''. \subsubsection*{Interpretation} If $F \subseteq \Pbb$, we interpret a $\Pbb$-name as follows: \[ \val(\tau, F) \defeq \{\val(\sigma, F) : \exists p \in F, (\sigma, p) \in \tau\} .\] \textbf{Important:} This is a recursive definition. Thus: the valuation is absolute for transitive models containing $\tau$ and $F$. \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\emptyset$: clearly $\val(\emptyset, F) = \emptyset$. \item $\tau_p$: \[ \val(\tau_p, F) \defeq \begin{cases} \{\emptyset\} & p \in F \\ \emptyset & p \notin F \end{cases} \] \item $\tau_{pq}$: \[ \val(\tau_{pq}, F) \defeq \begin{cases} \emptyset & q \notin F \\ \{\{\emptyset\}\} & q \in F \wedge p \in F \\ \{\emptyset\} & q \in F \wedge p \notin F \end{cases} \] The relationship between $p$ and $q$ affects these possibilities. Example: if $q \le p$ and $F$ is a \gls{filt}, then $\{\emptyset\}$ is impossible. Example: if $q = \indicator{}$ and $F$ is a non-empty \gls{filt}, then $\emptyset$ is impossible. Example: if $p \perp q$ and $F$ is a \gls{filt}, then $\{\{\emptyset\}\}$ is impossible. \end{enumerate} \end{example*} \begin{fcdefn}[Generic extension] The \emph{(generic) extension} for any \gls{ctm} $M$ and any $F \subseteq \Pbb$ where $\Pbb \in M$ is \[ M[F] \defeq \{\val(\tau, F) : \tau \in \Name^{\Pbb} \cap M\} .\] \end{fcdefn} Obviously, $M[F]$ is a countable set with $\emptyset \in M[F]$ (Example (1)). Also, by definition, $M[F]$ is transitive. \textbf{Note:} \[ M[F] \models \text{Extensionality} + \text{Foundation} .\] \subsubsection*{Need to show} \begin{enumerate}[(1)] \item $M \subseteq M[F]$. \item $F \in M[F]$. \item $M[F] \models \zfc$. \item $M[F]$ is minimal. \end{enumerate} \subsubsection*{Canonical Names} \begin{fcdefn}[Canonical name] Let $x \in M$. Define by recursion the \emph{canonical name for $x$} by \[ \check{w} \defeq \{(\check{y}, \indicator{}) : y \in x\} .\] \end{fcdefn} \begin{fclemma}[] $\val(\check{x}, F) = x$ if \cloze{$\indicator{} \in F$.} \end{fclemma} \begin{proof} Induction. \end{proof} \begin{fccoro}[] $M \subseteq M[F]$ if \cloze{$\indicator{} \in F$.} \end{fccoro} Alternative construction of canonical names without $\indicator{}$ is on \es{2}. \[ \Gamma \defeq \{(\check{p}, p) : p \in \Pbb\} .\] \begin{fclemma}[] $\val(\Gamma, F) = F$. \end{fclemma} \begin{proof} Calculate: \begin{align*} \val(\Gamma, F) &= \{\val(\check{p}, F) : p \in F\} \\ &= \{p : p \in F\} &&\text{(by previous lemma)} \\ &= F \end{align*} \end{proof} \begin{corollary}[] $F \in M[F]$. \end{corollary} \begin{remark*} If $N$ is a \gls{ctm} with $M \subseteq N$ and $F \in N$, then $M[F] \subseteq N$. (by \gls{abs}ness of $\val(\tau, F)$). \end{remark*} Warm-up: Suppose $\sigma, \tau \in \Name^{\Pbb}$. Define \[ \up(\sigma, \tau) \defeq \{(\sigma, \indicator{}), (\tau, \indicator{})\} .\] \textbf{Pairing:} Then \[ \val(\up(\sigma, \tau), F)) = \{\val(\sigma, F), \val(\tau, F)\} .\] (``up'' stands for unordered pair). \begin{fccoro}[] $M[F] \models \text{Pairing}$ (if \cloze{$\indicator{} \in F$).} \end{fccoro} \textbf{Union:} If $\tau$ is a name, define \[ u_\tau \defeq \{(\sigma', r) : \exists \sigma, p, q, \text{s.t.} (\sigma, p) \in \tau, (\sigma', q) \in \sigma, r \le p, q\} .\] Claim: $\val(u_\tau, F) = \bigcup \val(\tau, F)$ if $F$ is a \gls{filt}. \begin{proof} Suppose $z \in \val(u_\tau, F)$. So $z = \val(\sigma', F)$ for some $(\sigma', r) \in u_\tau$ with $r \in F$. So $\exists \sigma, p, q$ with $(\sigma, p) \in \tau$, $(\sigma', q) \in \sigma$, $r \le p, q$. So $p, q \in F$. Hence $\val(\sigma, F) \in \val(\tau, F)$, $z = \val(\sigma', F) \in \val(\sigma, F)$. So $z \in \bigcup \val(\tau, F)$. Conversely, suppose $z \in \bigcup \val(\tau, F)$. Then $\exists y, z \in y \in \val(\tau, F)$ ($z \to (\sigma', q) \in \sigma$ with $q \in F$, $y \to (\sigma, \rho) \in \tau$ with $p \in F$). Hence since $F$ a \gls{filt}, find $r \le p, q$ with $r \in F$. Then $(\sigma', r) \in u_\tau$, so $z \in \val(u_\tau, F)$. \end{proof}