%! TEX root = FC.tex % vim: tw=50 % 18/02/2025 12PM Cohen: $\forall T \subseteq \zfc$ finite, $\exists T^* \subseteq \zfc$ finite such that if $M$ is a \gls{ctm} of $T^*$, then there is $N \supseteq M$ \gls{ctm} of $T + \neg \ch$. ($*$) We have seen (\es{1}) that ($*$) implies $\Con(\zfc) \implies \Con(\zfc + \neg \ch)$. Simplified: If $M$ is a \gls{ctm} of $\zfc$, then there is $N \supseteq M$ \gls{ctm} of $\zfc h= \neg\ch$. \textbf{Idea:} If $M$ is a \gls{ctm} of $\zfc$: $\alpha \defeq \omega_1^M$; $\beta \defeq \omega_2^M$; $f : \beta \to \mathcal{P}(\omega)$ injection. Force $N$ such that $f \in N$ and $M \subseteq N$. Observe that there is a \gls{ctm} $N$ such that $f \in N$ and $M \subseteq N$. $M \cup \tcl(\{f\})$ is transitive and countable. Thus LSM % TODO gives $N$ transitive countable with $M \cup \tcl(\{f\}) \subseteq N$. Know $N \models \exists g : \beta \to \mathcal{P}(\omega)$ is an injection, but no clue what $\aleph_1$ and $\aleph_2$ in $N$ are. \textbf{How do we control what we add?} \newpage \section{Forcing} \begin{fcdefnstar}[Forcing] \glsadjdefn{forcing}{forcing}{poset}% $(\Pbb, \le, \indicator{})$ is called a \emph{forcing poset} or \emph{forcing} if it is a partial order and $\indicator{} \in \Pbb$ and $\indicator{}$ is the largest element. Elements of $\Pbb$ are called \emph{condition}. \end{fcdefnstar} $p \le q$ is interpreted as \begin{quote} ``$p$ is stronger than $q$'' ``$q$ is weaker than $p$'' \end{quote} \begin{note*} Unconventional. \end{note*} Alternative: ``Jerusalem convention''. Interpret $p \le q$ as ``$q$ is stronger than $p$''. We are \emph{not} following the Jerusalem convention. \begin{fcdefnstar}[Compatible] \glsadjdefn{comp}{compatible}{elements}% \glsadjdefn{incomp}{incompatible}{elements}% $p$ and $q$ are \emph{compatible} if there is $r \le p, q$. Otherwise, we say they are \emph{incompatible} (which we write as $p \perp q$). \end{fcdefnstar} \begin{fcdefnstar}[Antichain] \glsnoundefn{antic}{antichain}{antichains}% $A \subseteq P$ is an \emph{antichain} if any two distinct elements of $A$ are \gls{incomp}. \end{fcdefnstar} \begin{fcdefnstar}[Dense] \glsadjdefn{dense}{dense}{subset}% $D \subseteq \Pbb$ is \emph{dense} if $\forall p \in TODO$. \end{fcdefnstar} \begin{fcdefnstar}[Filter] \glsnoundefn{filt}{filter}{filters}% \glsnoundefn{filtb}{filter base}{filter bases}% $F \subseteq \Pbb$ is called a \emph{filter} if \begin{enumerate}[(a)] \item $\forall p, q \in F, \exists r \in F, r \le p, q$ \item $\forall p \in F, \forall q \in \Pbb, q \ge p \implies q \in F$ \end{enumerate} If $F$ only has property (a), we call it a \emph{filter base}, and then \[ \{p \in \Pbb : \exists q \in F, q \le p\} \] is the \emph{filter generated from $F$}. \end{fcdefnstar} \begin{note*} \glsref[filt]{Filters} \emph{cannot} contain incompatible elements. \end{note*} \begin{fcdefnstar}[$D$-generic] \glsadjdefn{Dgen}{$D$-generic}{family}% If $\mathcal{D}$ is a family of \gls{dense} sets, then $F$ is called \emph{$\mathcal{D}$-generic} if $F$ is a \gls{filt} and $\forall D \in \mathcal{D}, D \cap F \neq \emptyset$. \end{fcdefnstar} \begin{fcthm}[] \label{lec8the:theorem} Assuming: - $\mathcal{D}$ is countable Then: there is a \dgen{} \gls{filt}. \end{fcthm} \begin{proof} Let $\mathcal{D} = \{D_n : n \in \Nbb\}$. Pick $p_0 \in D_0$ arbitrarily and define by recursion $p_{i + 1}$ by picking some $q \le p_i$ with $q \in D_{i + 1}$. Then $\{p_i : i \in \Nbb\}$ is a \gls{filtb}, so let $F$ be the \gls{filt} generated by it. Then it is \dgen{} by construction. \end{proof} \subsubsection*{Main example} Fix any sets $X$ and $Y$ \[ \Fn(X, Y) \defeq \{p : \text{$p$ is a finite fucntion with $\dom(p) \subseteq X$ and $\range(p) \subseteq Y$}\} .\] Define $p \le q \iff p \supseteq q$ and $\indicator{} \defeq \emptyset$. What does $p \perp q$ mean? \[ p \perp q \iff \exists x \in X, x \in \dom(p) \cap \dom(q) \wedge p(x) \neq q(x) .\] \begin{fclemma}[] % Lemma 1 Assuming: - $F \subseteq \Pbb$ is a \gls{filt} Then: $\bigcup F$ is a function. \end{fclemma} \noproof \begin{fclemma}[] % Lemma 2 $D_x \defeq \{p \in \Pbb : x \in \dom(p)\}$ is \cloze{a \gls{dense} set. If $\mathcal{D} \defeq \{D_x : x \in X\}$, and $F$ is \dgen, then $\dom(\bigcup F) = X$.} \end{fclemma} \begin{proof} If $x \in X$, find $p \in F \cap D_x$, then $x \in \dom(p)$, TODO \end{proof} \subsection{Cohen Forcing} \subsubsection*{Example 1} $\Cbb \defeq \Fn(\omega, 2)$. If $F$ is \dgen, then $\bigcup F : \omega \to 2$ (by above). \begin{fclemma}[] % Lemma 3 Assuming: - Fix $f : \omega \to 2$ and define \[ N_f \defeq \{p \in \Pbb : \exists u, p(u) \neq f(u)\} .\] - $F$ is \glsref[Dgen]{$\mathcal{D} \cup \{N_f\}$} Then: $\bigcup F \neq f$. \end{fclemma} \begin{fccoro}[] There is no $F$ that is \cloze{\glsref[Dgen]{ $\mathcal{D} \cup \{N_f \st f : \omega \to 2\}$-generic}.} \end{fccoro} \emph{However:} if $M$ is a \gls{ctm} and you consider \[ \mathcal{N}_f \defeq \{N_f : f \in M\} ,\] then by \cref{lec8the:theorem}, there is a \glsref[Dgen]{$\mathcal{D} \cup \mathcal{N}_M$-generic}. And for this $F$, TODO \subsubsection*{Example 2} $\Fn(X, Y) \eqdef \Pbb$ as before. \begin{align*} R_y &\defeq \{p \in \Pbb : y \in \range(p)\} \\ \mathcal{R} &\defeq \{R_y : y \in Y\} \end{align*} \begin{fclemma}[] % Lemma 4 Assuming: - $F$ is \dgen[\mathcal{D} \cup \mathcal{R}]{} Then: $\bigcup F : X \to Y$ is a surjection. \end{fclemma} \begin{fccoro}[] Assuming: - $|Y| > |X|$ Then: there is no \dgen[\mathcal{D} \cup \mathcal{R}]. \end{fccoro} \emph{However:} if $M$ is a \gls{ctm} and, e.g. TODO \subsubsection*{Example 3} $\Fn(X \times Y, 2)$. Assume $X$ is infinite. Consider \[ E_{y, y'} \defeq \{p \in \Pbb : \exists x \in X, p(x, y) \neq p(x, y')\} .\] This is \gls{dense} for $y \neq y'$. \[ \mathcal{E} \defeq \{E_{y, y'} : y \neq y' \in Y\} .\] \begin{fclemma}[] % Lemma 5 Assuming: - $F$ is \dgen[\mathcal{D} \cup \mathcal{E}] Then: there is an injection from $Y$ into $\mathcal{P}(X)$. \end{fclemma} \begin{proof} Fix $y$ and define \[ A_y \defeq \{x \in X : (\bigcup F) (x, y) = 1\} .\] $E_{y, y'}$ guarantees that $y \mapsto Ay$ is an injection. \end{proof} \begin{fccoro}[] Assuming: - $|Y| > |\mathcal{P}(\omega)|$ Then: there is no \dgen[\mathcal{D} \cup \mathcal{E}]. \end{fccoro} \emph{However:} if $M$ is a \gls{ctm} of $\zfc + \ch$, $\alpha \def \omega_1^M$, $\beta \defeq \omega_2^M$, $\Fn(\omega \times \omega_2^M, 2)$ Because $\beta < \omega_1$, $\mathcal{E}$ is countable and so a \dgen[\mathcal{D} \cup \mathcal{E}] exists.