%! TEX root = FC.tex % vim: tw=50 % 04/02/2025 12PM Warm-up: let $(M, \in) \models \zfc$. Find countable $N \subseteq M$ such that $(N, \in) \prec (M, \in)$. Suppose $\ol{p} = (p_0, \ldots, p_n) \in M$ and $M \models \exists y, \psi(y, \ol{p})$. Let $w(\psi, \ol{p})$ be a witness for this: \[ M \models \psi(w(\psi, \ol{p}), \ol{p}) \] (if necessary, use Axiom of Choice). (if $M \models \neg \exists y, \psi(y, \ol{p})$, then let $w(\psi, \ol{p}) = \emptyset$). Set: \begin{align*} N_0 &\defeq \emptyset \\ N_{i + 1} &\defeq \{w(\psi, \ol{p}) : \text{$\psi$ formula and $\ol{p} \in N_1^{<\omega}$}\} \\ N &\defeq \bigcup_{i \in \omega} N_i \end{align*} Note: \begin{enumerate}[(1)] \item $N$ is countable. \item $M \prec N$ by \nameref{tvt}. \end{enumerate} \begin{remark*} In general, even if $M$ is transitive, $N$ is not. For example, if $\omega_1 \in M$, then \[ \exists x, (\text{$x$ is the least countable ordinal}) \] is true in $M$. \[ w(\psi, \emptyset) = \omega_1 .\] So $\omega_1 \in N$. But $\omega_1 \subseteq N$, since $N$ is countable. \end{remark*} Relevant later! Also see \es{1}. \begin{proof}[Proof of \nameref{lrt}] Fix $\varphi$ and let $\Phi$ be its collection of subformulas. This is a finite set! Need to show: $\forall \alpha, \exists \theta > \alpha$ such that $Z_\theta \models \varphi \iff Z \models \varphi$. For each $\psi \in \Phi$ and $\ol{p} = (p_0, \ldots, p_n)$, write \begin{align*} o(\psi, \ol{p}) &\defeq \begin{cases} \text{least $\alpha$ such that $\exists y \in Z_\alpha$ with $Z \models \psi(y, \ol{p})$} & \text{if it exists} \\ 0 & \text{otherwise} \end{cases} \\ o(\ol{p}) &\defeq \max_{\psi \in \Phi} o(\psi, \ol{p}) \\ \theta_0 &\defeq \alpha + 1 \\ \theta_{i + 1} &\defeq \sup \{o(\ol{p}) : \ol{p} \in Z_{\theta_i}^{< \omega}\} \\ \theta &\defeq \sup_{i \in \omega} \theta_i \end{align*} Then \nameref{tvt} implies that $Z_\theta$ and $Z$ agree on $\varphi$. \end{proof} \begin{fccorostar}[] If $T \subseteq \zfc$ is finite, then there is \cloze{$M$ transitive such that $M \models T$.} \end{fccorostar} \begin{proof} Let $\varphi \defeq \bigwedge_{\psi \in T} \psi$. Since $\zfc \vdash \varphi$, we have that $\varphi$ is true. By \nameref{lrt}, we can find $\theta$ such that $V_{\theta} \models \varphi$. Note $V_\theta$ is transitive. \end{proof} Remark about the proof of \nameref{lrt}: Can you do the same if $\Phi$ is infinite? Of course not: otherwise we colud prove that there exists $\theta$ such that $V_\theta \models \zfc$, and hence get $\Con(\zfc)$. The problem is the case distinction in the definition of $o(\psi, \ol{p})$: it requires to check whether $\exists y, \psi$ is true. \textbf{Next goal:} Obtain some $M \subseteq V_\theta$ countable such that $M \models \varphi$ and $M$ is transitive. TODO \begin{fcthmstar}[Mostowski's Collapsing Theorem] Let $r$ be a relation on a set $a$ that is well-founded and extensional. Then there exists a transitive set $b$, adn a bijection $f : a \to b$ such that $(\forall x, y \in a)(x~r~y \iff f(x) \in f(y))$. Moreover, $b$ and $f$ are unique. \end{fcthmstar} \noproof \begin{proof} See \courserefcustom{LST}{Logic and Set Theory}. \end{proof} \begin{fccorostar}[] For every $T \subseteq \zfc$ finite, there is a \gls{ctm} of $T$. \end{fccorostar} \begin{proof} Without loss of generality that $T$ contains the axiom of extensionality. Form $M \models T$ transitive by \nameref{lrt}. Use warm-up to obtain $N \prec M$ countable. This is extensional and well-founded, so by Mostowski find $W$ transitive such that \[ (W, \in) \cong (N, \in) .\] Then $W \models T$ adn $|W| = ||$, so $W$ is countable. \end{proof} The next few lectures will be spent proving $\Con(\zfc + \ch)$ using G\"odel's constructible universe. Absoluteness is preserved under transfinite recursion. Let $F, G, H$ be three operations. \begin{align*} R(0, \ol{x}) &\defeq F(\ol{x}) \\ R(\alpha + 1, \ol{x}) &\defeq G(\alpha, R(\alpha, \ol{x}), \ol{x}) \\ \tag{$*$} \label{lec4eq} R(\lambda, \ol{x}) &\defeq H(\lambda, \{R(\alpha, \ol{x}) : \alpha < \lambda\}, \ol{x}) \end{align*} \begin{proof} Attempts: set functions satisfying the \eqref{lec4eq}. \begin{enumerate}[L1] \item All attempts agree on their common domain. \item $\forall \alpha, \exists r$ attempt such that $(\alpha, \ol{x}) \in \dom(r)$. \end{enumerate} $R(\alpha, \ol{x}) \defeq y$ if and only if there exists attempt $r$ with $(\alpha, \ol{x}) \in \dom(r)$ and $r(\alpha, \ol{x}) = y$. \end{proof} Note that for $F, G, H$ fixed, there is a finite fragment $T_{F, G, H} \subseteq \zfc$ that proves the recursion theorem instance for $F, G, H$. \begin{fcthmstar}[] If $T \supseteq T_{F, G, H}$ and $F, G, H$ are absolute for transitive models of $T$, then so is $R$ defined by \eqref{lec4eq}. \end{fcthmstar} \noproof