%! TEX root = FC.tex % vim: tw=50 % 11/03/2025 12PM Previous lecture: Suppose $M$ a \gls{ctm} of $\zfc$. TODO \textbf{Question:} ($*$) What are the possible values for $2^{\aleph_0}$? Mentioned last lecture: not all values are possible. In particular, $2^{\aleph_0} \neq \aleph_\omega$. \begin{fcdefnstar}[Cofinal] \glsnoundefn{cofinal}{cofinal}{subset}% $C \subseteq \kappa$ is \emph{cofinal} ($=$ unbounded) if $\forall \lambda < \kappa, \exists \gamma \in C, \gamma \ge \lambda$. We can then define: \[ \cfinternal \kappa \defeq \{|C| : \text{$C$ is cofinal}\} .\] \end{fcdefnstar} \begin{example} $\cf \aleph_1 = \aleph_1$, $\cf \aleph_\omega = \aleph_0$. \end{example} \begin{fclemma}[Kőnig's Lemma] \label{lemma:konnig} $\kappa^{\cf \kappa} > \kappa$. \end{fclemma} Then \courseref{LST} \es{4} Q10 is the special case $\kappa = \aleph_\omega$, $\cf \kappa = \aleph_0$ of \nameref{lemma:konnig}. Consequence for $2^{\cf \kappa}$: $(2^{\cf \kappa})^{\cf \kappa} = 2^{\cf \kappa}$, thus $2^{\cf \kappa} \neq \kappa$. Preview of answer to ($*$): Every value not prohibited by \nameref{lemma:konnig} is possible. Now: $\aleph_2$! \begin{fcdefnstar}[] \glssymboldefn{ol}% \glsnoundefn{nn}{nice name}{nice names}% If $\Pbb$ is any \gls{forcing}, let \[ \olinternal \defeq \{A_n : n \in \omega\} \] be any $\omega$-sequence of \glspl{antic} in $\Pbb$. Let \[ \tau_{\olinternal} \defeq \{(\check{n}, p) : p \in A_n\} .\] We call these \emph{nice names}. \end{fcdefnstar} If $|\Pbb| = \kappa$ and $\Pbb$ has \gls{ccc}, then there are at most $\kappa^{\aleph_0}$ many \glspl{antic} and thus at most $(\kappa^{\aleph_0})^{\aleph_0} = \kappa^{\aleph_0 \cdot \aleph_0} = \kappa^{\aleph_0}$ many $\omega$-sequences of \glspl{antic} and thus \glspl{nn}. \begin{fcthm}[] Assuming: - $M[G] \models x \subseteq \omega$ Then: there is a \gls{nn} $\tau$ such that $\val(\tau, G) = x$. \end{fcthm} \begin{note*} The Theorem does not need any assumptions about $\Pbb$. \end{note*} \begin{proof} Start with $M$ such that $\val(\mu, G) = x$ (possibly not \glsref[nn]{nice}). Fix $n \in \omega$. Fix either a well-ordering of $\Pbb$ (possibly using $\ac$ to get one) and build a maximal \gls{antic} $A_n$ such that $\forall p \in A_n$, $p \forces \check{n} \in \mu$. TODO. Claim: $\val(\mu, G) = \val(\tau_{\OL}, G)$. $\supseteq$: If $n \in \val(\tau_{OL}, G)$, then there is $p \in G$ such that $(\check{n}, p) \in \tau_{\OL}$, and then $p \in A_n$, so $p \forces \check{n} \in \mu$. So $n \in \val(\mu, G)$. $\subseteq$: If $n \in \val(\mu, G)$, then by Forcing Theorem, get $q \in G$ such that $q \forces \check{n} \in \mu$. Subclaim: $A_n \cap G \neq \emptyset$. Indeed, by our lemma on compatibility (\es{3}), get $q' \in G$ such that $q' \perp p$ for all $p \in A_n$. Find $r \le q, q'$. Then $r \forces \check{n} \in \mu$. But that is in contradiction to $A_n$ being maximal. So find $p \in G \cap A_n$. By definition, $(\check{n}, p) \in \tau_{\OL}$ and $p \in G$. So $n \in \val(\tau_{\OL}, G)$. \end{proof} \begin{fccoro}[] Assuming: - $\Pbb$ has \gls{ccc} - $M \models |\Pbb| = \kappa \wedge \lambda = \kappa^{\aleph_0}$ Then: $M[G] \models 2^{\aleph_0} \le \lambda$. \end{fccoro} \begin{proof} Follows directly from: \begin{enumerate}[(a)] \item Theorem. \item Calculation of the number of \glspl{nn}. \end{enumerate} \end{proof} \subsubsection*{Main Application} If $\Pbb = \Fn(\omega \times \aleph_2^M, 2)$, then $|\Pbb| = \aleph_2^M$. Calculate in $M$, $\aleph_2^{\aleph_0}$. Hausdorff's Formula: \[ \aleph_{\alpha + 1}^{\aleph_\beta} = \aleph_{\alpha + 1} \cdot \aleph_\alpha^{\aleph_\beta} .\] So in particular: \begin{align*} \aleph_1^{\aleph_0} &= \aleph_1 \cdot \aleph_0^{\aleph_0} \\ &= 2^{\aleph_0} \\ \aleph_2^{\aleph_0} &= \aleph_2 \cdot \aleph_1^{\aleph_0} \\ &= \aleph_2 \cdot 2^{} \end{align*} So $\aleph_2^{\aleph_0} = \max(\aleph_2, 2^{\aleph_0})$. By this calculation, if $M \models 2^{\aleph_0} \le \aleph_2$, then $M[G] \models 2^{\aleph_0} \le \aleph_2$. \begin{corollary}[] If $M \models \ch$, then $M[G] \models 2^{\aleph_0} = \aleph_2$. \end{corollary} \begin{remark*} This proof also shows that if \[ M \models 2^{\aleph_0} \le \aleph_n \] and $G$ is \dgen[\Pbb] over $M$ where $\Pbb = \Fn(\omega \times \aleph_2^M, 2)$, then \[ M[G] \models 2^{\aleph_0} \le \aleph_n .\] Corollary: If $M \models \ch$, then $M[G] \models 2^{\aleph_0} = \aleph_n$. \end{remark*} \begin{remark*} What happens at $\aleph_\omega$? \[ \Pbb \defeq \Fn(\omega \times \aleph_\omega^M, 2) .\] By general theory, $M[G] \models 2^{\aleph_0} \ge \aleph_\omega$, but \nameref{lemma:konnig} gives $2^{\aleph_0} \ge \aleph_{\omega + 1}$. What about the lower bound? Our theorem and counting of \glspl{nn} yields \[ M[G] \models 2^{\aleph_0} \le \ub{\aleph_\omega^{\aleph_0}}_{> \aleph_\omega} .\] If $M \models \gch$, then \[ \aleph_\omega^{\aleph_0} \le \aleph_\omega^{\aleph_\omega} = \aleph_{\omega + 1} .\] So by \nameref{lemma:konnig}, $\aleph_\omega^{\aleph_0} = \aleph_{\omega + 1}$. Therefore, if $M \models \gch$, then $M[G] \models 2^{\aleph_0} = \aleph_{\omega + 1}$. \end{remark*} TODO First limit cardinal that is a possible value of $2^{\aleph_0}$ is $\aleph_{\omega_1}$. Clearly, $\Pbb = \Fn(\omega \times \aleph_{\omega_1}^M, 2)$ adds injection from $\aleph_{\omega_1}^M$ into $\mathcal{P}(\omega)$. So $M[G] \models 2^{\aleph_0} \ge \aleph_{\omega_1}$. Count \glspl{nn}: $|\Pbb|^{\aleph_0} = \aleph_{\omega_1}^{\aleph_0}$. If for all $\alpha < \omega_1$, $\aleph_\alpha^{\aleph_0} \le \aleph_{\omega_1}$ ($*$), then $\aleph_{\omega_1}^{\aleph_0} = \aleph_{\omega_1}$. \begin{align*} \aleph_{\omega_1}^{\aleph_0} &= \aleph_{\omega_1} \\ &= \ub{\{f \st f : \omega \to \aleph_{\omega_1}\}}_{\eqdef X} \\ &= \bigcup_{\alpha < \omega_1} \{f \st f : \omega \to \aleph_\alpha\} \end{align*} (since $\omega_1$ has no \gls{cofinal} $\omega$-sequence). Thus $|X| \le \aleph_1 \cdot \aleph_{\omega_1} = \aleph_{\omega_1}$ (by assumption ($*$)). Thus $M[G] \models 2^{\aleph_0} = \aleph_{\omega_1}$.