%! TEX root = FC.tex % vim: tw=50 % 08/03/2025 12PM \textbf{Summary:} If $G$ is $\Fn(\omega \times \aleph_2^M, 2)$-generic, then $M[G] \models \zfc + $there is an injection from $\aleph_2^M$ into $\mathcal{P}(\omega)$. This implies $M[G] \models \zfc + 2^{\aleph_0} \ge \aleph_2$ if we have $\aleph_1^M = \aleph^{M[G]}$, $\aleph_2^M = \aleph_2^{M[G]}$. This is the goal for today's lecture. Note that our proof above is \emph{not good enough} for the statement ($*$) from Lecture 8: \begin{quote} For all $T \subseteq \zfc$ finite, there exists $T^* \subseteq \zfc$ finite such that if $M$ is a \gls{ctm} of $T^*$, then there is $N \supseteq M$ \gls{ctm} of $T^* + \neg \ch$. \end{quote} For this, we need to look more carefully at the proof of the GMT: \[ M \models \zfc \implies M[G] \models \zfc .\] The proof proceeds AXIOM BY AXIOM and thus for each $\varphi \in \zfc$, we find finite $S_\varphi$ such that $M \models S_\varphi$ implies $M[G] \models \varphi$. Let $S \subseteq \zfc$ finite such that $S$ proves that all relevant notions (name, value, \ldots) are well-defined and absolute. Then for $T \subseteq \zfc$ finite, define \[ T^* \defeq S \cup \bigcup_{\varphi \in T} S_\varphi .\] Then, the proof shows ($*$). Let's prove $\neg\ch$ in $M[G]$. \begin{fcdefnstar}[Preserves cardinals] \glsadjdefn{prescard}{preserves cardinals}{forcing poset}% We say $\Pbb$ \emph{preserves cardinals} if $\forall G$ \dgen[\Pbb] over $M$, ``$\kappa$ is a cardinal'' is absolute between $M$ and $M[G]$. \end{fcdefnstar} \begin{fcdefn}[Countable chain condition] \glsadjdefn{ccc}{countable chain condition}{forcing poset}% We say $\Pbb$ has the \emph{countable chain condition} (c.c.c.) if every antichain (note the anti!) in $\Pbb$ is countable. \end{fcdefn} \begin{fcthm}[] \label{thm:ccc2prescard} Assuming: - $\Pbb$ has \gls{ccc} Then: $\Pbb$ \gls{prescard}. \end{fcthm} \begin{fcthm}[] \label{thm:hasccc} $\Fn(\omega \times \aleph_2^M, 2)$ has \cloze{the \gls{ccc}.} \end{fcthm} \begin{fccoro}[] Assuming: - $G$ is \dgen[\Fn(\omega \times \aleph_2^M, 2)] over $M$, then \[ M[G] \models \zfc + 2^{\aleph_0} \ge \aleph_2 .\] \end{fccoro} \begin{fclemma}[] Assuming: - $M \models \Pbb$ has \gls{ccc} - $X, Y \in M$ - $G$ is \dgen[\Pbb] over $M$ - $f : X \to Y$, $f \in M[G]$ Then: there is $F \in M$ such that $\forall x \in X, F(x) \subseteq Y$, $\forall x \in X, f(x) \in F(x)$ and $M \models \forall x \in X, F(x) \text{ is countable}$. \end{fclemma} \begin{proof}[Proof of \cref{thm:ccc2prescard}] Suppose $M \models \kappa \text{is a cardinal}$, $M[G] \models \text{$\kappa$ is not a cardinal}$, so there is $\lambda < \kappa$ and $f \in M[G]$, $f : \lambda \to \kappa$, $f$ is a surjection. Apply the lemma to get $F$. Define $R \defeq \bigcup_{\alpha < \lambda} F(\alpha)$. Since $\forall x, f(x) \in F(x)$, $R = \kappa$. But $M \models |R| = \aleph_0 \cdot \lambda = \lambda < \kappa$. But then $M$ thinks that $\kappa$ is not a cardinal, contradiction. \end{proof} Now we prove the lemma: \begin{proof} Let $F(x) \defeq \{y \in Y : \exists p \in \Pbb, p \forces \tau(\check{x}) = \check{y}\}$. Fix $\tau$ a name for $f$. By Definability Theorem , $F \in M$. Then $\forall x \in X, F(x) \subseteq Y$ follows from definition. $\forall x \in X, f(x) \in F(x)$ follows from Forcing Theorem. Let's look at $M \models F(x)$ is countable: If $y \in F(x)$, let $p_y$ be such that $p_y \forces \tau(\check{x}) = \check{y}$. If $y \neq y'$, then $p_y \perp p_{y'}$. Thus \[ \{p_y : y \in F(x)\} \] is an antichain. By \gls{ccc}, it's countalbe. So $F(x)$ was countable. \end{proof} TODO \begin{proof}[Proof of \cref{thm:hasccc}] Actually, we prove $\Fn(X, Y)$ has \gls{ccc} whenever $Y$ is countable. $\Delta$-systems form \es{3} Q33 are also called \emph{quasi-disjoint families}. (A family of finite sets $\mathcal{D}$ is called a $\Delta$-system if there is a finite set $R$ (called the root of the $\Delta$-system) such that for all $D, D' \in \mathcal{D}$, if $D \neq D'$ then $D \cap D' = R$). $\Delta$-system lemma: Any countable family of finite sets contains an uncountable $\Delta$-system. Take any $A \subseteq \Pbb$ uncountable and prove that it's not an antichain. If $p \in A$, then $\dom(p) \subseteq X$ finite. Consider \[ S \defeq \{\dom(p) : p \in A\} .\] That's an uncountable family of finite sets, so by $\Delta$-system lemma, find $\Delta$-system $\mathcal{D} \subseteq S$ uncountable. Let $r \subseteq X$ finite be the root of $\mathcal{D}$. Since $Y$ is countable, there are only countably many functions $q : r \to Y$. Since $D$ is uncountable, by pigeonhole principle, there are $p, q$ such that $\dom(p), \dom(q) \in D$ and $p|_r = q|_r$. But since $\dom(p) \cap \dom(q) = r$, $p$ and $q$ are compatible. So $A$ is not an antichain. \end{proof} We got $M[G] \models 2^{\aleph_0} \ge \aleph_2$. Next time: What is the size of $2^{\aleph_0}$ in $M[G]$? Remember: \courseref{LST} \es{4}: $\zfc \syn 2^{\aleph_0} \neq \aleph_\omega$. What if $\aleph_2$ was one of the forbidden values? \begin{remark*} Obtaining $M[G] \models 2^{\aleph_0} = \aleph_2$ cannot be quite as general as this proof: if $M \models 2^{\aleph_0} > \aleph_2$, then this will remain true in $M[G]$. \end{remark*} \begin{remark*} If $G$ is \dgen[\Fn(\omega \times \aleph_\alpha^M, 2)] over $M$, then \[ M[G] \models 2^{\aleph_0} \ge \aleph_\alpha .\] \end{remark*}